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preface
Alain Marty's work is the fruit of a particularly exacting author, who has spent a long time on the 

subject he proposes « Pascalian Forms ». Understanding the dialogue between « Forms and Forces », 
which is at  the core of the « Editions de l’Espérou » collection,  requires an open mind,  able to  link 
rational and sensitive approaches as part of the same movement.

The author's double training as Architect and Engineer would have been sufficient in itself, but the 
algorithms proposed here called for an extra quality in order to generate and represent the curved surfaces 
that  are  the subject  of  this  work.  This  quality  is  the simplicity  with which he approaches  computer 
science; and simplicity is something Alain Marty continually advocates in his work as a teacher. It is 
from his standpoint  at the intersection of pertinences,  that Alain Marty is able to guide us « straight 
ahead » along the road of « curved space ».

Robert Le Ricolais, known to light structure specialists for his important work in this field, insisted 
on « the joys of mathematics », joys that could not emerge, in his view, without  « a few tears ». Reading 
this essay on « curved surfaces » will likewise be a source of pleasure,  provided the reader is prepared to 
invest some time in doing so.

For my part, I am sure that those who undertake the task will find that if, only too often, people 
mistake the idea for the tool, particularly in the area of computer science, Alain Marty has been able to 
bring out the geometry and construct a tool to explore its complexity.

It is my pleasure to thank him for this, with these few lines which also bear witness to a meaningful 
encounter  with  the  Languedoc-Roussillon  School  of  Architecture,  within  the  Light  Structures  for 
Architecture team.

René Motro

Senior Lecturer at Montpellier University II
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forward
This essay on curved forms is the (provisional) outcome of a long road through the realm of form 

modelling, starting back in 1968 with a final studies report on freeform Thin Shells, interrupted until the 
80s by my work as practising Architect constructing with a T-square and set square, then taken up again, 
using the first microcomputers that were affordable. Things accelerated in 1990 after  making fruitful 
contacts at the EALR with René Motro,  Senior Lecturer at  Montpellier II,  and Head of the GRSLA 
laboratory on Light Spatial Structures  for Architecture, based at the Languedoc-Roussillon School of 
Architecture.

This work came out of discussions between « amateurs », with no particular assignment, in complete 
freedom, outside any course programme or university convention. It is based on a set of knowledge from 
past studies, self-learning built up on information gleaned from books you can pick up from any city 
bookshop. It is the result of a persistent desire to arrive at a clear, unitary approach to the wonderful but 
complex world of « curved  forms » and a need to share this thinking with fellow « explorers », whether 
atypical amateurs  or  members of  an institution,  mathematicians or  not,  theoreticians or practitioners, 
experts in the Art of Line-drawing of the master builders in the Middle Ages or virtuosos of the new 
modelling devices in Computer Graphics.

I was lucky enough to discover this interest on the part of René Motro, motivating me to go back to 
working in the area of control point forms  (Bézier, splines), and I am grateful to him for this. I also had 
the good fortune to meet a team of researchers at the GRCAO laboratory at Montreal University, in 1995,  
who were sympathetic  to  my ideas; I  am referring  here to  Giovanni  de Paoli  and Claude Parisel  in 
particular. And at Montpellier School of Architecture, for the continued and critical interest of Thierry 
Berthomier,  a Structural Morphology buff,  and occasionally  from the students  who were prepared to 
leave aside their architecture assignments to listen (for a while) to an original presentation of curved 
forms; I'm thinking particularly here of Vinicius Raducanu who has since gone on to follow his own path. 
I hope,  through this essay, to meet other  curved form enthusiasts who can help take this exploration 
further, who could perhaps use it in their own work, and/or share the road with me for a while. I hope at 
least that readers will get some pleasure out of this essay.

And I'd like to thank Colette, who was prepared to pretend she believed me every time I promised I 
only needed fifteen more minutes to « really » finish the study...

Alain Marty 

Villeneuve de la Raho, Pyrenées Orientales, France.

July 2004, December 2006
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introduction
Construct four equilateral triangles using six matches. That was the question Bernard Weber recalled 

in his first book on ants, with the added enigmatic reccommendation: « Think different ! », the key to the 
answer. By thinking differently,  the  Greeks invented  the Theory  of Conics,  combining  in  a coherent 
whole,  curves that are as diverse as the circle, the elipse,  the parabola and hyperbola,  as well as the 
straight line and the point. Much later, mathematicians invented the complex number field "so that" an N 
degree equation « always » has N solutions. The Chemist Mendeleev came up with a great classification 
for  the  seemingly  so  different  primary  elements  that  make  up  the  known  universe,  and  beyond  -  a 
formidable tool for discovering new elements. By writing mechanical and electrodynamic formulas in 
four  dimensional  space,  Einstein  not  only  succeeded  in  unifying  the  fundamental  concepts,  he  also 
created the conditions for new discoveries, of which the famous formula E = m.c2 is the best known. 
Illustrious cases...

A complex question posed in today's  space, one that is  three dimensional  and real,  can often be 
reformulated more simply by transposing it « for a while » to an imaginary, slightly more complex space. 
It's a way of dividing up the problem to master it better. For example, it is easier to study the stability of a 
thin  curved  shell  when  the  problem is  posed  as  the  curved  geometry  of  this  shell,  rather  than  the 
orthogonal euclidian space surrounding it.

But the geometry of curves and curved surfaces is, in itself, an example of a complex problem that is 
difficult to model, represent and visualise. Mathematicians of the last centuries admittedly marked it out 
with wonderful differential formulae, but these are often beyond the field of application of « descriptive 
geometry » with its use of simple tools like a ruler, a compass or a simple freehand drawing. Beyond 
these elementary forms of classic geometry, straight lines, circles, planes, spheres etc., one has to admit 
that nothing can be easily manipulated without the help of computer tools. In its applications to computer 
graphics and CAD, computer science has provided us with operational modelling for classic geometrical 
forms, but has also also brought out a new family of curved forms that are very practical to manipulate 
on the screen (Béziers, Splines, Nurbs, Coons squares,..). But because of the operational orientation of 
the  computer  tools  developed,  these forms cannot  be apprehended  directly  even  less  manually.  The 
algorithms developed in the imposing and sometimes indigestible literature are complex or hidden in the 
depths of software black boxes. As far as I know, no unitary approach accessible to the layman has really 
emerged to bring these forms to the fore and create the conditions to discover new ones.

Such is the aim of the present essay on curved forms.

De Casteljau proposed an algorithm of the same name in 1959, a fundamental recursive algorithm 
that is stunningly simple, a geometrical construction that is highly intuitive leading to a potent theory, the 
type of algorithm that is based on a  « gestural » approach that seems off-beat, old fashioned and which 
one could come across several times without ever seeing any more than a simple sketch designed to 
accompany the algebraic, analytical and matricial formulas that fill the literature on the subject. A simple, 
almost esoteric sketch, taken from the art of line drawing of builders in the Middle Ages...

The present essay gives this algorithm a central position, using it as a systematic application with the 
aid of a handful of elementary geometrical operations; it adds some elements to a descriptive geometry of 
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« pascalian »forms, building a bridge between classical geometrical forms and the new forms that have 
emerged from computer science, defining forms whose rules ultimately allow freehand drawing, with a 
piece of string as the only guide... Thus the forms that go by the name of Bézier curves and surfaces are 
reconstituted simply by using the geometrical operators initially applied to a pair of points in space, and 
up to any number of these forms.

This  unitary  approach,  which  is  intuitive  and  based  on  analytical  formulation  reduced  to  the 
minimum, simplifies access to the case of forms immersed in other curved forms and to deducing the 
most complex forms like Splines, Nurbs (whose conics constitute a particular and very important case), 
tubings,  Coons  squares,  etc....,  all  with  projection,  concatenation  and  simple  linear  combination 
operations.

The  set  of  « pascalian »,  forms,  or  « pForms »,  equipped  with  these  operators  thus  comprises  a 
descriptive  geometry,  a  tool  to  aid  direct  and   « manual »  understanding  of  forms whose  analytical 
expression can sometimes be very complex, a tool that can help explore new forms up to their higher 
dimensions.

The document is divided into three main parts :

1.construction,  definition  :  this  part  presents  a  progressive  approach  to  pForms bringing  out  the 
unitary character of forms that seem at first glance to be very different - such as the cube and the ... cubic  
- leading to a general definition of pForms ;

2.operations,  properties  :  this  part  presents  the  operations  that  can  be  carried  out  on  pForms 
-subdivisions,  degree  elevations,  ...-,  and  the  fundamental  properties  of  pForms  -  tangent  axes, 
interpolations, embedding in other pForms, ... - ;

3.compositions, applications : this part analyses some compositions specific to pForms, their relations 
to conics, notably to revolving surfaces, preparing the way for a geometry of curved surfaces.

From differential geometry ..
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computer implementation
The exploration  of  curved  forms began by  hand,  and  freehand  drawings  were the first  basis  for 

reflection.  Drawing  a  cubic  using  trade  software  does  not  usually  add  much  information  about  the 
internal mechanics of the curves produced; we're simply consuming. But the mind that guides the pencil  
on the paper or the cursor on the screen often mistakes its desires for reality, so the drawing that comes 
out  may not really match the reasoning process,  leading to a false concepion of the envisaged form. 
Algebraic reasoning then came to assist drawing, but can we really trust a result obtained at the cost of 
five or six pages of cramped calculations where a single erroneous sign can completely undermine the 
reasoning?

Although software to manipluate geometrical forms proves to be of little interest in studying their 
foundations, the remarkable tools of programming language can be used to back up thinking at the most 
fundamental level. All that reains is to choose the right language and this is no mean feat: choosing the 
right development tools, the right environment and the right platform all demand a high investment in 
learning how to use all these elements. Basic, Pascal, Hypertalk, Logo, C, C++, Renderman, Open GL, 
Java,  Java  3D,  you  need  a  lot  of  time to  master  the  vocabulary  and  syntax,  along  with  the  purely 
geometrical thinking process to be developed - not forgetting the computer tools in the all this maze. It's 
easy to end up spending more time reinventing the algorithm to fill in a 3D polygon to display in a 
window, than thinking about the actual nature of the form to be modelled and studied on the screen.

Thus the interest  of  a tool  like POVRAY, open software that works on all  platforms based on a 
RayTracing  rendering  engine  and developed  by  a  community  of  academics and researchers  from all 
countries,  whose  site  can  be  found  at  the  following  address:  http://www.povray.org.  Apart  from its 
excellent  rendering  engine,  its  many  capacities  (boolean  operations  for  instance)  and  numerous 
predefined objects, POVRAY software uses a real development language ; it is possible to define global 
and local variables, chains, tables, test and control structures to create loops, macros that behave like real 
processes and functions,  loaded with parameters, reversing values and moreover able to be called up 
recursively, which is the fundamental property required by the present study. This software is a real gift 
for the computer graphics researcher and when you consider that the language used is very standard and 
close to C language, the "universal" language, you "know" that it will always be possible to put your 
work on any other software platform.

The operators studied were implemented on POVRAY and have been incorporated in a library as part 
of a 'pFlibs.inc' headed by the 'pFscene.pov' files rendered by POVRAY. This implementation was linked 
to the developing the basic operators and many others,  for easy visualisation of the forms produced, 
« visual » control of their validity, and the production of high quality images as an end result. Visual 
control means that the cramped pages of calculations intended to demonstrate such and such a result have 
been replaced by pages of computer code that are just as complex. The difference is that this computer 
code constitutes a set of algorithms that are faithfully and effortlessly executed by the computer, as many 
times as needed and in all possible or imaginable conditions.  And the fact that this machine has the 
annoying tendancy to execute exactly what it is asked to do rather than what we actually want it to do! In 
general, the result is not quite what we expect, leading to trailing back and forth until we finally get the 
expected result... either that, or we finally admit that the concept envisaged was ridiculous anyway.
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POVRAY has really been a great help in finishing this study, to the extent that the initial syntax used 
to develop the reasoning in this work, was quickly joined and sometimes replaced by POVRAY's. For 
instance, in the syntax used to present geometrical concepts, the definition of a parabola defined by three 
points is written as :

pL3 = MIR(p0,p1,p2), 
recursif operator MIR applied to three points 

on the basis that the recursive operator is assumed to apply to an infinite  recursion level.  In  the 
syntax used in the POVRAY implementation, the definition and representation of the parabola are written 
as :

#local pL3 = array[3] { p0, p1, p2 }
pFdraw( 1, pL3, 

finesse(3) + courbe(0.01) + ma_couleur(<1,0,0>) )

which can be read as : a local variable (pL3, cf notation below in the text) associated with the parabola is 
stated and defined as a three point table (p0, p1,p2); the macro pFdraw() applies a level 3 recursion to the 
table  (refinement (3)), producing a 9 point table, drawing it in the form of a polyline passing through the 
nine  points,  composed  of  cylinders  with  a  radius  of  0.01  (curve(0.01))  coloured  red 
(my_colour(<1,0,0>)).  The  statement  and  representation  of  a  form  will  generally  be  completely 
dissociated; a parabola will be defined by the data of a three point array, with no need to choose its 
representation, the width and colour of the line of course, nor, what's more, the recursion level, to the 
extent that there is no distinction between the control polygon defined by the initial three points and the 
parabola generated by infinite recursion.

At the end of the work, readers will find a complete list of the operators that can be used as macros,  
compiled in a file, « pFlibs.inc » headed by the « pFscene.pov » files to analyse their functioning and 
produce images or animations.

... to computer tools !
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geometry reminder
Summary of this section :

01 elementary geometry, primitive forms 

02 cartesian geometry and equations  

021 implicit equations 

022 parametric equations 

023 differential equations 

0231 the apple 

0232 the marble 

0233 the sliver of soap  

03 first attempt at classification 

031 solid forms 

032 flexible forms 

033 elastic forms 

To help situate the « problematic » of curved shapes (curves, surfaces, curved volumes), it would be 
useful  to  look  at  some  reference  points  in  elementary  geometry  and  primitive  forms,  in  cartesian 
geometry and equations, and to attempt a first classification, or unification at least, of curved forms.

01 elementary geometry and primitive 
forms 

While few people have read « Euclid's elements », the sum of which still forms the basis of geometry 
today,  everyone has more or less toiled  over some figures traced with a ruler and a compass,  equal 
triangles, Thales theorem and parallels, and it's true that for many people, geometry stops there, at points, 
straight lines, triangles and circles. A few venture beyond into the corners of polyhedrons, and get utterly 
lost  in  the  jungle  of  icosahedrons,  rhombic  dodecahedrons  and  other  forms  prized  by  the 
christallographer... as for curved forms like the trajectory of a bird meandering through the sky, the curve 
of  a  breaking  wave,  the  hips  of  Rodin's  Danaide,  these  seem quite  beyond  any  simple  method  of 
construction, or attempt at unitary description.

The simplest curved form is the circle, which we know how to trace using a peg and a piece of string  
of constant length; and the surface of the sphere is constructed in the same way. But seen on the bias, a 
circle is no longer a circle and apparently nothing is constant any more, neither the distance from each 
point to the centre, nor the curvature at each point, raising the problem of constructing it directly on a 
plane with no reference to the circle of which it is the biased view. This curve that we call an « ellipse », 
presents two symmetries in relation to two orthogonal axes, so the idea came up one day of marking two 
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points on the big axis, that are symmetrical to the small one and to tighten a continuous piece ofstring 
into a triangle between these two points and a point on the ellipse. Using trial and error, it emerged that at  
a given position of the two points, the total length of the string remained constant and these points were 
called the foci of the ellipse. The construction of a curve generalising the circle and its constant radius 
was thus found, opening up the world of controlled curves of variable curvature.

But  another  curve  also  attracted  the  attention  of  geometricians  :  the  curve  followed  (at  a  first 
approximation) by a stone thrown in a bias through the air or thrown by the powerful water jets of a 
fountain.  This  curve,  called a parabola,  did not bend back on itself  like the ellipse that it  resembled 
locally, and even seemed to continue toward infinity ! The construction of this curve, which was finally 
discovered, was not as easy as that of the ellipse and required introducing a point on the symmetrical axis 
(also called a focus) and a straight line orthogonal to this axis (called a directrix) ; so this was nothing 
like the ellipse and even less so, the circle. The unification of these curves came about with the « Theory 
of Conics ».

The  « Theory  of  Conics »  revealed  by  the  Greeks,  simply  and  elegantly  demonstrates  the 
fundamental relationships between curves that are as different in appearance as a circle, an ellipse and a 
parabola: all these curves are conics, sections of a cone with a circular base on a more or less sloping 
plane in relation to the axis of the cone. So that was it. But this required the effort of shifting from the 
two dimensional space in which the three curves are found to a three dimensional space where it was 
possible to describe a cone and its intersections with a plane. « Think different ! », that's the key to the 
solution, as Bernard WERBER reminded us.

And, as is often the case, a window opening onto a new space reveals new things, by sloping the 
intersecting plane a little more, we discover the two arcs of a new curve, the hyperbola, the asymptote  
concept and finally a unitary representation of six important elements in geometry : the point, the straight 
line, the circle, the ellipse, the parabola and the hyperbola. 

We are aware of the importance of Pythagoras and his theorem on the right-angled triangle written in 
modern language as:  a2+b2=c2 ;  and we are also aware of the despair  of  Pythagoricians when they 
applied  this  formula  to  measuring  the  diagonal  of  a  one-sided  square  and  they  realised  (and 
demonstrated) that it was impossible to extract the square root of the number 2 in the form of a whole or 
fractional  number;  this  number  was entirely  « irrational »  and it  was unreasonable  to  talk  about  it  ; 
period.  Hence their  deduction that linking the world of geometry with that of arithmatic was totally 
prohibited  (on  pain  of  death)  and  it  was  two  thousand  years  before  Descartes  broke  this  taboo, 
systematically associating number relations with geometrical objects and searching for the « equation ».

02 cartesian geometry and equations

In this approach to geometry, the basic idea is to associate a set of numbers called « coordinates » 
with each point in space, two on the plane (x,y), three in space (x,y,z); each of these numbers could take 
any value in the  ]-infinite, +infinite[ interval, in a set known as the set of real numbers, R. Let's say that 
R2 is all the points in a two dimensional space, and R3 all the points in a three dimensional space. And  
we  will  define  geometrical  objects  (straight  lines,  circles,  planes,...)  by  the  relations  between  the 
coordinates - the equations -  compelling the points of these objects to remain in a limited part of R2 or  
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R3. We will now look at implicit equations, parametric equations and differential equations.

021 implicit equations

The implicit equation of a curve is a relation written as f(x,y) = 0, which has the advantage of a 
symmetrical treatment of coordinates, which is not the case in the better known explicit form : y = f(x).  
Related to a pair of axes Ox and Oy, a straight line in plane R2 is where points P(x,y) lie, such that y 
varies proportionately to x, y/a = x/b, which is usually written in the following explicit form :

y = a/b.x + d,
where d is the ordinate of the point on the Oy axis

and in implicit form :

f(x,y) = ax + by - d = 0.

Likewise, we find the implicit equation of a parabola :

f(x,y) = y - ax2 - d = 0,

where d is the ordinate of the point on the Oy axis. The equation of an r radius circle centred on the  
origin of the axes follows after immediately applying Pythagoras' theorem :

x2 + y2 = r2,

and is written in implicit form as :

f(x,y) = x2 + y2 - r2 = 0, 

Likewise it is easy to find the implicit equation of a sphere in space :

f(x,y) = x2 + y2 + z2 - r2 = 0.

Finding the equation for a plane is a little more complex. A plane is first defined in R3 space passing 
through the origin of the axes by means of a unitary vector which is normal at this point N(a,b,c), then a 
plane parallel to this and found at distance d ; let H be the intersecting point of this plane and the straight 
line on which N is found. Any point  P(x,y,z) on this plane is such that its projection on the straight line 
containing N is point H, in other words such that the scalar product N•OP = OH, and the equation is 
written :

ax + by + cz - d = 0.

What could the implicite equation f(x,y,z) = 0 be of a straight line in R3 space ? No such equation 
exists, in fact, leading to considering a straight line in space as an intersection of two planes and defining 
a point P(x,y,z) as the solution to a bilinear equation system :

ax  + by  + cz  - d  = 0
a'x + b'y + c'z - d' = 0
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So we see that in representing the simplest objects as implicit equations, it is hard to find unity of 
form and general rules ; each form involves a specific approach and this approach depends on the space 
in which it is found, its dimension, its curvatures...

022 parametric equations

Parametric equations offer more scope for elegantly defining a large number of geometrical forms. 
This involves an approach whereby the coordinates of the point of a form will be expressed as a function 
of one or a number of parameters generally confined to a unitary interval [0,1]. 

That is to say, a space of a given dimension (let's say 2 or 3), O the point of origin of the axes and 
any two points P0 and P1 of this space ; a point of the segment held by PO and P1 can be expressed in 
the form :

OP(t) = OP0 + P0P1.t with t € [0.1]

an equation expressing vector OP as the sum of vector OP0 and a vector held by P0P1 and of a 
reduced length of that of P0P1 in t proportion. But the following equivalent writing is preferable, as  an 
equation expressing vector OP as the sum of vector OP0 and vector P0P1 reduced in t proportion. But the 
following equivalent writing is preferable, as it is more elegant, with no reference to point of origin, and 
is symetrical in relation to points P0 and P1:

OP(t) = OP0 + (OP1-OP0).t
= (1-t).OP0 + t.OP1
= (1-t).P0 + t.P1

where P is seen to shift linearly from  P0 to P1 when t varies from 0 to 1. Note that this vector 
equation is equivalent in R3 space to three scalar equations in x, y and z. In fact, writing it this way 
avoids the problem of the number of dimensions and will be used extensively later. This writing allows a 
whole family of « linear » forms to be defined simply ; here we can mention - without further explanation 
at  this  stage  -  the  portion  of  the  double  ruled  surface  that  goes  by  the  pretty  name  ofhyperbolic 
paraboloid (also called HP) and defined by any 4 points in space (P00, P01, P10, P11) by the following 
bilinear expression :

P(t) = (1-u).(1-v).P00 + u.(1-v).P01 + (1-u).v.P10 + u.v.P11,     
with u,v €[0.1],

and the arc of the parabola obtained from this HP by equalling u and v ( u = v = t ) and totally 
defined  (controlled) by 3 new points P0, P1, P2 :

P(t) = (1-t)2.P0 + 2.u.(1-t).P1 + t2.P2,
with t €[0,1], and P0 = P00, P1 = (P01 + P10)/2, P2 = P11

constituting  the  first  features  of  a  family  of  shapes  referred  to  in  chapter  1,  shapes  that  are 
respectively controlled by 4 and 3 points.

Concerning  the  circle  -  centred  on  the  origin  and  of  unit  radius  -  the  parametric  equation  is 
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immediately based on fundamental triganometric functions :

P(t) = [ cos(A) , sin(A) ] with A € [0, 2. ],π

which is of no help when we know that these trigonometric functions are transcendent functions, that 
cannot be expressed in the form of a polynoma with a finite number of terms. By defining a new variable 
t  =  tangent(A/2),  we can dispense  with  trigonometric  functions  and  find  a rational  expression  -  i.e. 
written as a quotient, with ratios :

x = (1-t2)/(1+t2)
y = 2.t/(1+t2)

It is hard to find a link between this expression and that of a right segment, but in chapter 3 we will 
see how to attach this expression to that of a parabola, thanks to the Theory of Conics...

For the sphere, the classic parametric expression in u and v : 

P(t) = [ r.cos(u).cos(v), r.cos(u).sin(v), r.sin(u) ]

is difficult to transform into a rational form and we will also have to wait until chapter 3 to study this 
further. 

023 differential equations

Some  geometrical  forms  can  often  only  be  defined  on  the  basis  of  so-called  « differential » 
properties. This is the case for the altitude of an apple falling from an apple tree, a marble rolling on a 
curved surface in gravity-free space, or the equilibrium surface of a sliver of soap hung on a wire.

0231 : the falling apple 

The function  z(t)  that  governs  the altitude  of  an  apple  falling  from the branch  of  an  apple  tree 
satisfies three simple rules :

z(0) = h, initial height of the tree 
z'(0) = 0, null initial speed 

(unless there's a mischievous squirrel) 
z"(t) = -g, weight acceleration (constant)

and the solution is a parabolic function  z(t) obtained by double integration : 

z’(t) = -1.g.t
z(t)  = -1/2.g.t2+ h

0232 : the rolling marble

The trajectory of a marble rolling without friction and without skidding over a curved surface in 
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gravity-free space is called a geodesic ; this curve is such that the thrust exerted by the marble on the 
surface is always perpendicular to the surface at point of contact, equal and opposed to the reaction of the 
surface, cancelling any tangential force. This property can be expressed mathematically by writing the 
marble's acceleration as a vector orthogonal to the surface, but some differential geometry is needed to do 
so (a lot, in fact).

Any point M of a surface is defined in space by the following expressions :

M(u,v) = [ x(u,v), y(u,v), z(u,v) ] with u,v € [0,1]

expressions known as surface parametric equations. The same point can also be defined as belonging 
to a curve immersed in the surface in the form of the following parametric equation :

M(t) = [ u(t), v(t) ] with t € [0,1]

The first derivative (speed) of M(t) in relation to t is expressed in function of the partial derivatives 
∂uM and ∂vM at point M(t) on the surface :

dM/dt = ∂M/∂u.du/dt + ∂M/∂v.dv/dt

or to simplify writing :

M' = ∂uM.u' + ∂vM.v'

the second derivative (acceleration) is then calculated :

M" = dM'/dt
= d(∂uM'.u' + ∂vM'.v')/dt
= d(∂uM'.u')/dt + d(∂vM'.v')/dt
= (∂2uuM.u'+ ∂2uvM.v').u' + ∂uM.u" 
+(∂2uvM.u'+ ∂2vvM.v').v' + ∂vM.v"
= ∂uM.u" + ∂vM.v" 
+ ∂2uuM.u'2 + 2.∂2uvM.u'.v' + ∂2vvM.v'2

Knowing that the partial derivatives ∂uM and ∂vM define the vectors tangent to the surface in M(t), 
all that remains is to express the orthogonality of these vectors with vector acceleration by cancelling 
their scalar products :

M"•∂uM = 0,
M"•∂vM = 0

which is the differential system that has to satisfy M(t) for the curve followed to be a geodesic. We do 
not know how to incorporate this system in the general case, and even for a majority of cases ; only 
approached  solutions  can be obtained  and  the analysis  of  the properties  of  these geodesic  curves is 
extremely complex. This is a real shame when you consider that another property of these geodesics is 
that  they  are  the  quickest  route  between  any  two  points  on  a  surface  (under  certain  conditions  of 
proximity) and they are to curved surfaces what straight lines are to euclidian space, the fundamental 
geometric  entity  from  which  everything,  or  almost  everything,  is  derived,  polygons,  triangles,  the 
definition  of  angles,  parallelism,  etc...  Curved  surfaces  appear  to  form  a  world  that  is  virtually 
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inaccessible to exploration, if we exclude the computer approach, in which there is more to look at than 
actually understand.

0233 the sliver of soap

Nature  offers  us  all  kinds  of  equilibrium  surfaces,  funicular  curves,  and  minimal  surfaces.  The 
equilibrium surface of a sliver of soap hung on a wire is such that each point is placed in a mean position 
in relation to its neighbours; to begin with, let's imagine a « discrete » - discontinuous - mesh projected 
on a square (x,y) and write the altitude z(i,j) of each point as equal to the arithmetic mean of the altitude 
of the points in a cross :

z[i,j] = ( z[i-1,j] + z[i+1,j] + z[i,j-1] + z[i,j+1] ) / 4

also written as :

z[i-1,j] + z[i+1,j] + z[i,j-1] + z[i,j+1] - 4.z[i,j] = 0

or even :

( z[i-1,j] - 2.z[i,j]+ z[i+1,j] ) + 
( z[i,j-1] - 2.z[i,j]+ z[i,j+1] ) = 0

an expression in which we recognise the sum of two second-order finite differences, leading, when 
we shift to a continuous mesh, to a partial derivative equation known as a Laplace equation : 

∆( z ) = ∂2z/∂x2 + ∂2z/∂y2 = 0

This  amazingly  simple  equation  (not  forgetting  the  discrete  form  that  is  nothing  more  than  an 
arithmetic mean) is fundamental to mathematical physics, it features in the study of numerous complex 
problems, from electromagnetism to elasticity. We might ask how such a simple expression can describe 
the complex forms that a sliver of soap can take. Alan Turing, an English mathematician and logician, 
considered as one of the founding fathers of computer science and artificial intelligence, apparently used 
to say « Science is a differential equation. Religion  is a boundary condition » . This perhaps explains 
why the equation, studied by generations of mathematicians has found no solution in the general case, 
although simply expressible in implicit or parametric form. So we are a long way from having the tools 
that  would  be so useful  in researching  the relations  between the conics  and geodesics of  a minimal 
surface, to use an example that will be examined later ! 

Note :   open  a spreadsheet  that  uses  iterative calculus  and can display  surfaces ;  enter  the first 
formula in  a table  of  say 20x20 cells ;  so  there  are 400  formulas  displaying  the value zero.  In  the 
peripheral cells, replace the formulas with zero values, then somewhere near centre left, enter the value 
+1 and toward centre right the value -1. Display the corresponding graph, choosing surface type, and 
watch : a lovely minimal surface comes up stretched on a horizontal rectangular frame, pulled up to the 
top left and down to the bottom right. By making the « boundary conditions » more complex and using a 
little imagination, you should manage to recreate the Sagrada Famillia ;-) Alan Turing was right !

19 / 192



pascalian forms | 03 first attempt at classification

03 first attempt at classification

A first rough classification can be made on the basis of this quick overview, by dividing the forms 
into three families according to « hardness » : solid forms, flexible forms and elastic forms.

031 solid forms

Solid forms are such that any deformation destroys the form ; a sphere in which one point is modified 
is no longer a sphere, it is no longer a form in which the points are equidistant from the centre and thus 
no longer complies with its first definition, it is no longer even a continuous surface with a tangent plane 
at each point. Conics and most surfaces defined by implicit equations behave in the same way, and are 
actually difficult to manipulate, modify and combine continuously with other surfaces - the fuselage of a 
plane  built  with  these  forms  is  merely  a  series  of  joins  of  varying  strength,  with  a  whole  set  of 
consequences  in  terms  of  aerodynamics  (turbulences),  the  resistance  of  the  materials  (stress 
concentration) and look (discontinuity of reflections).

032 flexible forms 

Flexible forms, on the other hand, will tolerate partial, non destructive deformation, using the control 
points ; so far, we have mentioned only three forms controlled by a limited set of points, the segment, the 
hyperbolic  paraboloid (HP) and the parabola.  Whatever transformations are made to the three points 
controlling a parabola, it remains a parabola ; the HP will likewise shift from a very flat orthonormed 
square to a slender, saddle-shaped curved form, finally becoming a curvilinear triangle (the curved side is 
a parabola) well known by children who play with strings on two lines of points, all this without losing 
the  slightest  property.  Gaudi's  Sagrada  Familia  in  Barcelona  is  a  complex  composition  of  slender 
hyperbolic paraboloids and parabolas that closely resemble the organic forms dreamed of by the Catalan 
architect. In chapter 3 we will take a closer look  at how to build the fuselage of a plane, from the conic 
nose to the tailplane via the pear shape following the line of the cockpit, continuously and harmoniously, 
with the advantages already hinted at in terms of aerodynamic, structural and esthetic properties.

033 elastic forms

Elastic  forms  are  constructed  from  boundary  constraints  by  maintaining  internal  equilibrium  ; 
geodesics,  minimal  surfaces,  and  Laplace's  equation  have  already  been  mentioned,  along  with  the 
difficulty involved in treating this type of geometry. Yet these are precisely the optimal forms in nature, 
forms that we should be able to understand and  really master, and it is for these forms that we have a 
minimum of easy-to-handle tools.

The present study will focus more particularly on flexible forms, approached in the simplest and most 
unitary way to show the bridges that can be built between them, with solid surfaces on one side and 
elastic surfaces on the other. The aim is to try to find a precise or approached description of solid and 

20 / 192



pascalian forms | 033 elastic forms

elastic forms, starting from flexible forms. The arc of a circle redefined using a flexible curve could 
finally be transformed into a nice pear shape, or a cam or a drop of water, then warp in space, embed 
itself in a surface, a surface that slowly tends toward the equilibrium of a sliver of soap.

Having run through this reminder on geography, we are now going to ask how to combine points in 
space, and first of all, how to construct the midpoint between two points.

21 / 192



pascalian forms | 1 construction, definition

1 construction, definition
Summary of this section :

11 recursive multilinear forms  

111 a point in R4 

112 a right segment, pL2 

113 a curved facet, pS22 

114 a curved cube, pV222 

115 a curved hypercube, pH2222 

116 first generalisation 

12 diagonalisation 

121 the curved facet and its parabola 

122 the ruled paraboloid and its cubic 

123 the curved cube, its diagonals 

124 the biquadric and its diagonal 

13 generalisation: definition of pForms 

This chapter presents a gradually approach to some curve forms, highlights the unitary character of 
forms that appear to differ greatly - like the cube and the ... cubic - leading to the general definition of 
pForms.

We  propose  using  a  set  of  points  to  construct  a  family  of  forms  (curves,  surfaces,  volumes, 
hypervolumes, …) initially generated by the recursive application of a simple operation :

« construct the midpoint of two points » 

Let us construct the midpoint between two points avoiding the use of a ruler and compass. On a very 
flat floor, for example, one method is to stretch a rope between two posts, trace the right segment passing 
by these two posts with a piece of chalk, then bring the second end of the rope back to the first, following 
the line left by the chalk, folding the rope into two equal parts whose new end is now at the midpoint of 
the segment.
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figures 1.1 and 1.2 : finding the midpoint between two points, an elementary gesture ; the sum of two 
points does not produce an invariant point, but a half sum does.

On a curved surface the problem is a little more complex,  there is an infinite  number  of curves 
linking the two posts and it is advisable to stretch the string by placing it on the curve following the only 
curved curve, or geodesic, constituting the shortest route between these two points and along which the 
normal to the cord (in the osculatory plane) is colinear with the normal to the surface. Both cases work 
on the hypothesis that the string maintains constant length and is infinitely flexible. By avoiding the prior 
use of a classic construction of the midpoint with a ruler and compass, this principle of constructing the 
midpoint remains valid for any surface, and this will be the starting point of a generalisation of the forms 
studied in euclidian space to forms belonging to curved spaces, via the introduction of the immersed 
segment concept.

But how do we write the midpoint of two points, and any combination of points beyond that ? The 
reference space is « current »  space populated  by points  that  hopefully  will  be able to  be combined 
according to a linear expression of the type: 

∑
i
 ki.pi, with i = [0,n–1]

Combining vectors linearly is not a problem, ... in a vectoral space ; but point space (called affine space) 
does not have all the properties of a vectoral space, even if it resembles it and, notably, not all the linear  
point combinations are valid. It is possible, for instance, to define the sum of two vectors independently 
of the apex, but this cannot be done for two points; on the other hand, the half-sum of two points will 
produce  an  invariant  point  with  a  change  of  apex  thus  constituting  a  weighted  and  valid  linear 
combination. Generally speaking, we show that any linear combination of points is valid if it satisfies the 
condition that :  
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∑
i
 ki = 1, with i = [0,n–1]

Notably correct will be expressions like :

p = (p0 + p1)/2 
p = 2.p0 – p1
p = (2.p0 + p1)/3
p = (p0 + 3.p1 + 3.p2 + p3)/8  

which respectively represent the midpoint of two points, the symetrical point of p1 in relation to p0, 
the point at a third of segment p0p1 and the midpoint of a cubic defined by the four points (p0,p1,p2,p3). 
You may  have  noticed  that  all  this  is  simply  another  expression  of  the  well  known  theorems  on 
barycentres...

Having  stated  this  clearly,  we  can  construct  the  first  family  of  « recursive  multilinear  forms » 
constructed with a pair of operators MI() and MIR(), extend it by applying a  « diagonalisation », DIAG() 
operator, and finally propose the fundamental definition of pascalian forms.

11 recursive multilinear forms

Summary of this section :

• 111 a point  in R4

• 112 a right segment 

• 113 a curved plane surface 

• 114 a curved cube 

• 115 a curved hypercube 

• 116 first generalisation 

By applying a pair of operators  MI() and MIR() to a set of points we are able to naturally generate 
the first linear shapes in geometry : right segments, (curved) facets, (curved) cubes, (curved) hypercubes, 
and beyond, if necessary.

111 a point in R4

The linear combinations envisaged above can be expressed in an affine space of any Rn dimension. 
For reasons we will go into later, we will operate on points that are always defined in R4, using the so-
called  homogeneous  coordinate,  or  projective  form:  <x,y,z,t>,  associating   the  R3  point  defined  as 
<x/t,y/t,z/t> with the R4 point. To begin, t=1 will be used by default, forgetting that we are working in 
R4 space.

In POVRAY/pFlibs syntax, a current point (x,y,z) is defined by stating a local variable P and giving it  
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3 coordinates x, y, z (and t= 1) between brackets  '<' and '>' :

#local P = <x,y,z,1>;

The  macro calls :

draw( 0, <0.0,0.0,0.5,1.0>, STANDARD )
draw( 0, <0.0,0.0,0.0,1.0>, point(0.1)  + ma_couleur(<1,1,0,0.5>))
draw( 0, <0.0,0.0,-0.5,1.0>, point(0.1) + ma_texture(GOLD) )
draw( 0, <0.0,0.0,0.0,1.0>, point(0.1)  + ma_texture(MIROIR) )
draw( 0, <-0.5,0.0,0.0,1.0>, point(0.1) + ma_texture(GRANIT) )
draw( 0, <0.5,0.0,0.0,1.0>, point(0.1)  + ma_texture(MARBRE) )

will draw six points respectively in the standard form of a red sphere with a radius of 0.05, and in 
forms that are gold, chrome, granite and translucent plexiglass with black stripes, with a radius of 0.2.

figure 111 : the 3 axes Ox, Oy, Oz (red, green, blue) and some points.
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112 a straight segment

figure 112.1 : from the pair of points to the segment (pL2).

Let us call MI() the operator returning the midpoint of two points p0 and p1 of the space :

pm = MI(p0,p1) = (p0+p1)/2 

Note that the sum of the coefficients is : 1/2 + 1/2 = 1. This third point pm gives rise to two pairs of 
points (p0,pm) and (pm,p1), and to the irresistable desire to start back in the direction of p0 and p1 :

p0m = MI(p0,pm) pm1  = MI(pm,p1)
p00m = MI(p0,p0m) pmm1 = MI(pm,pm1)
p0mm = MI(p0m,pm) pm11 = MI(pm1,p1)
etc… etc…

Recursive application of operator MI() will produce an infinite and « dense » set of points situated 
between the two points p0 and p1, a « right segment » that we will designate as pL2 (the reasons for this 
notation will be given later in the text) ; if we agree to call MIR() the recursive operator thus defined, we 
will write :

pL2 = MIR(p0,p1)

This  set  of  points  (pL2)  is  not  strictly  speaking  a  right  segment  such  as  is  usually  defined  in 
geometry. While the recursive process does lead to a set of points of the desired number, with a distance 
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between each point  tending  to  zero,  the  set  obtained  is  not  continuous  and  is  not  « really »  a right 
segment. A right segment is usually defined in Rn linking a pair of points (p0, p1) like all points that 
satisfy bijective linear application :

p(t) = (1-t)*p0 + t*p1,
with t in the interval [0,1] of the set of real numbers (R)

This set of points is finite and continuous (like R), and points like p(1/3) or p(k) with k = root(2)/2, 
can  indeed  be  reached  on  this  right  segment;  which  is  not  the  case  for  pL2  that  is  in  a  bijective 
relationship to all the partitions of unity  (1/2, 1/4, 1/8,...). Such a set is said to be dense, and it really is  
this property of density that interests us, notably because it brings us back to the indispensable concept of 
tangent. This will be dealt with in more detail in section 2, and our pL2 will subsequently be assimilated 
to a « real » right segment and the derived forms (surfaces, volumes,...) to the classic continuous forms in 
geometry.

In POVRAY/pFlibs syntax, we define and draw a two point array thus :

#local pL2 = array[2] { p0, p1 } // array of two points
draw( 1, pL2, STANDARD ) // 1 is the dimension of the segment

Note that pL2 IS quite simply THIS two point array. The macro call :

#local pL2_subdivisee = pFsubdivision( 1, pL2, 4 )

implement operator MIR(), by applying MI() to the pL2 point array 4 times, to produce a series of 
2^4+1 = 17 points that will be drawn by the following call :

draw( 1, pL2_subdivisee, STANDARD ) // 17 small red spheres

Subdivision can be incorporated in the drawing call more directly by inserting the finesse() operator :

draw( 1, pL2, finesse(4) ) // 17 small red spheres

and the spheres can even be replaced by cylinders to obtain a yellow segment with a 0.02 radius by 
writing :

draw( 1, pL2, finesse(4) + courbe( 0.02 ) + couleur(<1,1,0>) )
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figures 112.2 to 112.5 : a segment (pL2) constructed on two points.
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113 a curved facet

figures 113.1 and 113.2 : two representations of a curved facet (pS22).

Given two segments pL2_0 and pL2_1 constructed on points (p00,p01) and (p10,p11). Considering 
the  segment constructed on the respective midpoints of the extremities of segments pL2_0 et pL2_1 :

pL2_M = MIR( MI(p00,p10), MI(p01,p11) )

and playing on the commutativity  oflinear operators MI() and MIR(),  leads to understanding the 
definition of operator MI() thus :

pL2_M = MI( MIR(p00,p10), MIR(p01,p11) )
= MI( pL2_0, pL2_1 )

Recursive application of operator MI() to pairs of segments to the left (pL2_0,pL2_M) and right 
(pL2_M,pL2_1) produces an infinite and dense set of segments forming a portion of the surface, a curved 
facet that we will designate as pS22 ; extending the application of operator MIR() to the case of two 
segments, we will write :

pS22 = MIR( pL2_0, pL2_1 )

In POVRAY/pFlibs syntax, you write :

// creation of an array of two segments :
#local pS22 = array[2] { pL2_0, pL2_1 }
// drawing of 2*2 = 4 small red spheres:
draw( 2, pS22, STANDARD ) // 2 is the dimension of the surface
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// recursion of level 2 in both dimensions:
#local spS22 = pFsubdivision( 2, pS22, <2,2> )
// drawing of (4+1)*(4+1) = 25 small red squares:
draw( 2, spS22, STANDARD )
// variant: recursion 2 in both dimensions 
// and drawing of a smooth yellow surface:
draw( 2, pS22, finesse(<2,2>)+surface(LISSE)+couleur(<1,1,0>) )

figures 113.3 to 113.7 : curved facet (pS22) constructed on two segments (pL2).
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114 a curved cube

Following the progression and redefining operator MI() to produce the midpoint facet between two 
curved facets (pS22_0 et pS22_1) and operator MIR() for its recursive application, we can construct an 
infinite and dense set of facets, a curves mille–feuilles, a volume that we'll call a « curved cube », noted 
pV222.

pS22_M = MI( pS22_0, pS22_1 )
pV222  = MIR( pS22_0, pS22_1 )

figure 114.1 : midpoint facet of two curved facets (pS22). 

In POVRAY/pFlibs, syntax you write  :

// creation of an array of two surfaces:
#local pV222 = array[2] { pS22_0, pS22_1 }
// drawing of 2*2*2=8 small red spheres:
draw( 3, pV222, STANDARD )
// recursion 2 in the three dimensions 
// and drawing of the 6 plane surfaces of a curved cube:
draw( 3, pV222, finesse(<2,2,2>)+enveloppe(LISSE)+couleur(<0,1,1>)) 

to construct and draw the eight apexes of a curved cube and its cyan envelope.
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figures 114.2 to 114.5 : curved cube (pV222) constructed on two curved facets (pS22).

Just  as  a  curved  facet  can  be  represented  in  several  forms  (square  matrix  of  points,  segment 
distribution or contiuous surface), a curved cube can be represented in several aspects : mille-feuilles of 
curved plane surfaces, tridimensional matrix of points, bundle of segments, or usually in the form of an 
envelope  made  up  of  its  six  curved  plane  surfaces.  In  all  cases,  a  curved  cube  is  above  all  a 
tridimensional table of points, a real volume object that can be cut open to extract other objects (surface, 
curves, points).
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figure 114.6 : fibered representation of a curved cube.

115 a curved hypercube

Lastly, by redefining operators MI() to produce the midpoint curved cube between two curved cubes 
(pV222_0 and pV222_1) and MIR() for its recursive application, we can construct a curved hypercube.

pV222_M = MI( pV222_0, pV222_1 )
pH2222  = MIR( pV222_0, pV222_1 )

In POVRAY/pFlibs syntax, you write :

// creation of an array of two volumes:
#local pH2222 = array[2] { pV222_0, pV222_1 }
// drawing of 2*2*2*2 = 16 small red spheres:
draw( 4, pH2222, STANDARD )
// drawing of (2*2+1)^4 = 625 small yellow spheres: 
draw(4,pH2222,finesse(<2,2,2,2>)+point(0.02)+couleur(<1,1,0>))

to construct and draw the sixteen red apexes of the hypercube with a filling of small yellow spheres, 
until we find a more eloquent representation than image 115.2 below ...
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figures 115.1 and 115.2 : midpoint cube of two curved cubes (pV222) ; a hypercube « cloud ».

116 first generalisation

The pair of operators  MI() and MIR() thus produces a family of linear shapes obtained by a recursive 
process. As a general rule, we note that operator MI() produces a shape of the same dimension and that 
operator MIR() produces a form of a bigger dimension. These forms are generally curved (apart from the 
segment of course), the curved facet is a quadrangular portion of the classic hyperbolic paraboloid, a 
ruled surface with double negative curvature, and the six sides of a curved cube are curved facets. 

These shapes are « full », each point of a shape can be adressed : a curved cube is a volume filled 
with points rather than just an empty envelope, and the same goes for the hypercube. So we have in fact 
defined coherent forms in which it will be possible to work and from which we can extract « sub-forms » 
for instance. An inverse operation,  diagonalisation,  producing a form whose dimension is smaller but 
more complex than a linear segment will lead us on to new extensions of operators MI() and MIR().
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12 diagonalisation

Summary of this section :

• 121 the curved facet and its parabola 

• 122 the ruled paraboloid and its cubic  

• 123 the curved cube and its diagonals

• 124 the biquadric and its diagonal

All the preceding forms are linear many times, they are generated by families of straight lines, but 
this doesn't mean they contain fewer « true » curves presenting a certain interest. The curved facet, for 
instance, is a saddle-shaped form presenting a certain curvature as soon as the two generating segments 
cease to be coplanary. By folding a curved facet back on itself, a kind of triangle is made, one side of 
which is the arc of a parabola. This « folding » of the facet allows us to construct a curve, a form of 
smaller dimension to that of the facet, but of greater complexity than the right segment.

121 the curved facet and its parabola

Given a curved facet constructed on two segments (pL2_0,pL2_1) defined on two pairs of points 
(p00,p01) and (p10,p11) :

pS22 = MIR( pL2_0, pL2_1 )
= MIR( MIR( p00, p01 ), MIR( p10, p11 ) ),

the midpoint of the facet can be defined as :

pm = MI( MI( p00, p01 ), MI( p10, p11 ) )
= ( (pOO + p01)/2 + (p10 +p11)/2 )/2
= ( pOO + p01 + p10 + p11 )/4

This point determines four sub-facets (p00,pm), (p01,pm), (p10,pm) and (p11,pm). By iterating the 
operation recursively on the two diagonal sub-facets constructed on pairs (p00,pm) and (pm,p11),  an 
infinite and dense set of points is generated, a curve diagonally linking points p00 and p11 of the curved 
facet. Let DIAG() be used to name the operator that creates this diagonal line in the facet.

diagonal = DIAG( pS22 )
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figures 121.1 and 121.2 : two views of the diagonal of a curved plane.

This  diagonalisation  produces  a  curve  of  a  smaller  dimension  than  that  of  the  facet,  leading  to 
seeking a reduced set of « control » points extracted from the four points generating the facet. 

By defining the three points  :

p0 =   p00,
p1 = ( p01+p10 )/2,
p2 =       p11,

the midpoint can be rewritten in a form leading to considering an operator MI() applicable to three 
points :

pm = ( p0 + 2*p1 + p2 )/4
= MI( p0, p1, p2 )

This new operator actually consists of a twofold recursive application of the initial  operator MI() 
leading to point pm from the triplet (p0,p1,p2), using two intermediary midpoints q0 and q1 :

q0 = MI(p0,p1),
q1 = MI(p1,p2),
pm = MI(q0,q1)

Hence we can consider it as a valid extension of operator MI().

Furthermore, the recursive application of this operator with triplet points (p0,q0,pm) and (pm,q1,p1) 
reproduces the diagonal curve, that we will now decide to designate as pL3, extending the application of 
MIR() to the three point case, we write :
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pL3 = DIAG( pS22 )
= MIR(p0,p1,p2)

This construction brings us back to the basic algorithm proposed by de Casteljau in the case of a 
curve  (parabola)  defined  by  three  points  ;  this  is  logically  linked  to  the  process  of  generating  the 
recursive  multilinear  form family,  via  a kind  of  contraction/folding/diagonalisation  of  a curved  facet 
(portion of a hyperbolic paraboloid). This reformulation by applying the extended operators MI() and 
MIR() allows us to leave the purely rectilinear world of recursive multilinear forms and to really confront 
that of curved forms. In POVRAY/pFlibs syntax, you write :

// definition of a curved facet and display:
#local pS22 = array[2] { pL2_0, pL2_1 }
draw( 2, pS22, refinement()+surface(SMOOTH)+my_colour(<1,1,1>) )
// extraction of the diagonal control points:
#local p0 =   pS22[0][0];
#local p1 = ( pS22[0][1]+pS22[1][0] ) / 2;
#local p2 =              pS22[1][1];
// definition of the parabola and display:
#local pL3 = array[3] { p0, p1, p2 }
draw( 1, pL3, STANDARD ) // control points 
draw( 1, pL3, finesse(5)+courbe(0.02)+ ma_couleur(<1,1,0>) )
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figures 121.3 to 121.6 : parabola (pL3) constructed on 3 points, diagonal of a curved facet (pS22).

122 the ruled paraboloid and its cubic

figures 122.1 and 122.2 : construction of a ruled paraboloid (pS32) from two parabolas (pL3), and  
from three segments (pL2).

We know how to construct a parabola. Let two parabolas pL3_0 and pL3_1 be constructed on points 
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(p00,p01,p02) and (p10,p11,p12). Considering the parabola constructed on the respective midpoints of 
points defining the two parabolas :

pL3_M = MIR( MI(p00,p10), MI(p01,p11), MI(p02,p12) )

we are led to extending the definition of operator MI() thus :

pL3_M = MI(pL3_0,pL3_1)

Recursive  application  of  operator  MI()  to  parabola  pairs  (pL3_0,pL3_M)  and  (pL3_M,pL3_1) 
produces an infinite and dense set of parabolas,  a ruled paraboloid,  that we will  designate as pS32 ; 
extending the application of MIR() to the case of two parabolas, will be written as :

pS32 = MIR(pL2_0,pL2_1) // pS32 or pS23

Note that this surface can also be obtained from three segments constructed on (p00,p10), (p01,p11), 
(p02,p12), leading to the extension of operators MI() and MIR() to the case of three segments :

pL2_M = MI(pL2_0,pL2_1,pL2_2),
pS32 = MIR(pL2_0,pL2_1,pL2_2) 

From this last point of view and to the extent of our knowledge, this can be considered as a new 
extension of de Casteljau's algorithm applied to three segments, rather than to three points as is usually 
presented, ... at least in the case of three points.

The same reasoning  that underlies  constructing  the diagonal  of a curved facet applies  to  a ruled 
paraboloid to produce a midpoint defined by four points :

p0 = p00,
p1 = (2*p01 + p10)/3,
p2 = (p02 + 2*p11)/3,
p3 = p12,
pm = (p0 + 3*p1 + 3*p2 + p3)/8

= MI(p0,p1,p2,p3)

and a diagonal curve (cubic) :

pL4 = DIAG( pS32 )
= MIR(p0, p1, p2, p3)
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figure 122.3 : ruled paraboloid (pS32) and its diagonal (pL4) constructed on 4 points.

In POVRAY/pFlibs syntax, you write :

/ definition of a ruled paraboloid from 
// 3 segments or 2 parabolas, and display:
#local pS32 = array[3] { pL2_0, pL2_1, pL2_2 }
            = array[2] { pL3_0, pL3_1 }
draw( 2, pS32, refinement() + surface(SMOOTH) + my_colour() )
// extraction of diagonal control points:
#local p0   =    pS32[0][0];
#local p1   = (2*pS32[0][1]+  pS32[1][0]) / 3;
#local p2   = (  pS32[0][2]+2*pS32[1][1]) / 3;
#local p3   =                 pS32[1][2];
// definition of the cubic and display:
#local pL4  = array[4] { p0, p1, p2, p3 }
draw( 1, pL4, STANDARD ) // control points
draw( 1, pL4, finesse(5)+courbe(0.02)+ma_couleur(<1,1,0>) )

Comment 1 : the cubic is often used in computer graphics to approximately represent the arc of a 
circle at 90°, -cf figure 122.8-; in part 31 we will see how to get an exact representation of a circle.

Comment 2 : the cubic is the first curved curve we have encountered so far ; we will see its use in 
part  34  on  Concatenations.  Figure  122.9  illustrates  the  occupation  in  space  of  a  cubic  linking  two 
opposite points of a cube.

Comment  3 : Figure 122.10 represents the diagonal cubic of a paraboloid constructed on a grid 
orthonormed by its control points ; let us say that this is an orthonormed representation of the surface and 
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its diagonal. It is easy to visualise positions at 1/3 and 2/3 of points p1 and p2.

figures 122.4 to 122.7 : progressing toward the ruled paraboloid (pS32) and its diagonal (pL4).
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figures 122.8 to 122.10 : flat cubic approximating the arc of a circle, and cubic in space ;  
orthonormed representation of a curved facet (pS32) and positioning of the 4 control points of its  

diagonal (pL4)  .

123 the curved cube and its diagonals

figure 123.1 : curved cube (pV222) and its diagonals, ruled paraboloid (pS32) and cubic (pL4).

The ruled paraboloid (pS32) constructed on the diagonal parabolas of the curved facets generating a 
cube, can be considered as the diagonal surface of the curved cube ; we saw that a cubic (pL4) could be 
considered as the diagonal of a ruled paraboloid (pS32), and thus as the « square » diagonal of the cube :

DIAG( pV222 ) –> pS32
pL4 = DIAG( pS32 )
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= DIAG( DIAG( pV222 ) )
= DIAG2( pV222 )

Likewise, the third diagonalisation of a curved hypercube pH2222 would lead to a curve controlled 
by 5 points, a pL5 :

DIAG( pH2222 ) –> pV322 // un cube contrôlé par 3 facettes
DIAG( pV322 ) –> pS33  // une surface contrôlée par 3 quads
pL5 = DIAG( pS33 )   // une courbe contrôlée par 5 points

= DIAG( DIAG( pV322 ) )
= DIAG( DIAG( DIAG( pH2222 ) ) )
= DIAG3( pH2222 )

In POVRAY/pFlibs syntax, in the case of a cube, you write :

// definition of a curved cube and display:
#local pV222 = array[2] { pS22_0, pS22_1 }
draw( 3, pV222, finesse()+envelope(LISSE)+ma_couleur(<1,1,1>) )
// diagonal surface of pV222 and display:
#local pS32 = pFdiagonalisation( 3, pV222 )
draw( 2, pS32, finesse()+surface(LISSE)+ma_couleur(<1,1,0>) )
// diagonal curve of pS32 and display:
#local pL4 = pFdiagonalisation( 2, pS32 )
draw( 1, pL4, STANDARD ) // control points 
draw( 1, pL4, finesse(5)+courbe(0.02)+ ma_couleur(<1,0,0>) ) 

figures 123.2 :  two representations of the curved cube and its diagonals.
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These new forms, notably surface pS33 (that we can decide to call biquadric by analogy with Bézier's 
bicubic square controlled by 4 cubics and called bicubic) and curve pL5, stem from the diagonalisations 
of a left hypercube pH2222 ; but they could be constructed more easily using operators MI() and MIR().

124 the biquadric and its diagonal

Two parabolas  have allowed us to  create a ruled paraboloid,  three parabolas  lead to  a biquadric 
defined thus :

pS33 = MIR( pL3_0,pL3_1,pL3_2 )
= MIR( MIR(p00,p01,p02),MIR(p10,p11,p12),MIR(p20,p21,p22) )

whose midpoint can be written as :

pm = MI( MI(p00,p01,p02), MI(p10,p11,p12), MI(p20,p21,p22) )
 = ( (p00+2p01+p02)/4+2(p10+2p11+p12)/4+(p20+2p21+p22)/4 )/4
 = ( p00+4(p01+p10)/2+6(p02+4p11+p20)/6+4(p12+p21)/2+p22 )/16
 = ( q0 + 4q1 + 6q2 + 4q3 + q4 )/16
 = MI( q0,q1,q2,q3,q4 )

with q0 = p00
q1 = (p01+p10)/2
q2 = (p02+4p11+p20)/6
q3 = (p12+p21)/2
q4 = p22

leading to the construction of a diagonal curve defined by 5 points  :

pL5 = MIR( q0,q1,q2,q3,q4 )

figure 124.1 : orthonormed representation of the biquadric (pS33) and the 5 control points of its  
diagonal (pL5).
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figures 124.2 and 124.3 : biquadric (pS33) with its three generating (control) parabolas (pL3), and 
diagonal (pL5) of the biquadric with its 5 generating (control) points.

In POVRAY/pFlibs syntax, you write :

// definition of biquadric from 3 parabolas
// and display:
#local pS33 = array[3] { pL3_0, pL3_1, pL3_2 }
draw(2,pS33,finesse(<3,3>)+surface(LISSE)+ma_couleur(<1,1,1>))
// extraction of control points of the diagonal:
#local p0  =   pS33[0][0];
#local p1  = ( pS33[0][1]+  pS33[1][0]             ) / 2;
#local p2  = ( pS33[0][2]+4*pS33[1][1]+ pS33[2][0] ) / 6;
#local p3  = (              pS33[1][2]+ pS33[2][1] ) / 2;
#local p4  =                            pS33[2][2];
// definition of pL5 and display:
#local pL5= array[5] { p0, p1, p2, p3, p4 }
draw( 1, pL5, STANDARD ) // control points
draw( 1, pL5, finesse(5)+courbe(0.02)+ma_couleur(<1,0,0>) ) 
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figures 124.4 à 124.8 : biquadric (pS33) defined by three parabolas (pL3) and its diagonale pL5.

Note that the biquadric (pS33) is the first, and so the simplest, non ruled curved surface in the family 
of pForms. The biquadric, and its diagonal (pL5), are particularly important for everything that follows.
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13 generalisation : pFormes

Starting from the midpoint of a curved facet we applied a recursive process diagonally and created a 
parabola ; starting from the midpoint segment of a curved cube we applied the same recursive process 
diagonally to create a ruled paraboloid ; starting from the midpoint of a ruled paraboloid we likewise 
created a cubic. We noted the relation between these diagonals and the forms produced by operators MI() 
and MIR() redefined to apply to any number of forms, a new and generalised writing of the algorithm 
proposed by de Casteljau in 1959. By continuing to note a curve pL, a surface pS, a volume pV, etc…, 
followed by indexes to determine the number of generating forms, we have so far constructed the forms :

MIR( pP_0, pP_1 ) –> pL2,segment
MIR( pL2_0, pL2_1 ) –> pS22,facet
MIR( pS22_0, pS22_1 ) –> pV222,cube
MIR( pV222_0, pV222_1 ) –> pH2222,hypercube
DIAG( pS22 ) = MIR(pP_0,.., pP_2) –> pL3,parabola
DIAG( pV222 ) = MIR(pL3_0, pL3_1) –> pS32,ruled paraboloid
DIAG( pS32 )  = MIR(pP_0,.., pP_3) –> pL4,cubic

figure 13.1 : the first pSurfaces and their diagonals, from pS22 to pS44.

In a more systematic manner we will now construct the expression of the midpoint of two diagonals 
of different primitive surfaces, from pS22 (left facet) to pS44 (bicubic), cf figure 13.1 :
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pS22 :
pM = MI( MI(p00,p01), MI(p10,p11) )

= ((p00+p01)/2 + (p10+p11)/2 )/2
= ( p00 + 2(p01+p10)/2 + p11 )/4
= ( q0 + 2q1 + q2 )/4
= MI( q0,q1,q2 )

pS32 :
pM = MI( MI(p00,p01,p02), 
         MI(p10,p11,p12) )
   = ((p00+2p01+p02)/4 + (p10+2p11+p12)/4 )/2
   = ( p00 + 3(2p01+p10)/3 + 3(p02+3p11)/3 + p12)/8
   = ( q0 + 3q1 + 3q2 + q3 )/8
   = MI( q0,q1,q2,q3 )

pS33 :
pM = MI( MI(p00,p01,p02), 
         MI(p10,p11,p12), 
         MI(p20,p21,p22) )
   = ( (p00+2p01+p02)/4+2(p10+2p11+p12)/4+(p20+2p21+p22)/4)/4
   = ( p00+4(p01+p10)/2+6(p02+4p11+p20)/6+4(p12+p21)/2+p22)/16
   = ( q0 + 4q1 + 6q2 + 4q3 + q4)/16
   = MI( q0,q1,q2,q3,q4 )

pS42 :
pM = MI( MI(p00,p01,p02,p03), 
         MI(p10,p11,p12,p13) )
   = ( (p00+3p01+3p02+p03)/8 + (p10+3p11+3p12+p13)/8 )/2
   = ( p00+4(3p01+p10)/4+6(3p02+3p11)/6+4(p03+3p12)/4+p13)/16
   = ( q0 + 4q1 + 6q2 + 4q3 + q4 )/16
   = MI( q0,q1,q2,q3,q4 )

pS43 :
pM = MI( MI(p00,p01,p02,p03), 
         MI(p10,p11,p12,p13), 
         MI(p20,p21,p22,p23) )
   = (  (p00+3p01+3p02+p03)/8 + 2(p10+3p11+3p12+p13)/8 
         + (p20+3p21+3p22+p23)/8 )/4
   = (  p00 + 5(3p01+2p10)/5 + 10(3p02+6p11+p20)/10 
         + 10(p03+6p12+3p21)/10 + 5(2p13+3p21)/5 + p23)/32
   = ( q0 + 5q1 + 10q2 + 10q3 + 5q4 + q5 )/32
   = MI( q0,q1,q2,q3,q4,q5 )

pS44 :
pM = MI( MI(p00,p01,p02,p03), 

48 / 192



pascalian forms | 13 generalisation : pFormes

         MI(p10,p11,p12,p13), 
         MI(p20,p21,p22,p23),
         MI(p30,p31,p32,p33) )
   = (  (p00+3p01+3p02+p03)/8 + 3(p10+3p11+3p12+p13)/8 
         + 3(p20+3p21+3p22+p23)/8+(p30+3p31+3p32+p33)/8 )/8
   = (  p00 + 6(p01+p10)/2 + 15(p02+3p11+p20)/5 

+20(p03+9p12+9p21+p30)/20
+15(p13+3p22+p31)/5+6(p23+p32)/2+p33)/64

   = ( q0 + 6q1 + 15q2 + 20q3 + 15q4 + 6q5 + q6 )/64
   = MI( q0,q1,q2,q3,q4,q5,q6 )   

We could likewise study diagonal pSurfaces in  pVolumes, and so on… 

In general, we can see that :

• operator MI() produces a form of the same dimension,

• operator MIR() produces a form of a bigger dimension, 

• operator DIAG() produces a form of a smaller dimension.

Any mid-form can always be written in an explicit form of the type :

n = 2 formes: Fm = (           1.F0 + 1.F1            ) /2
n = 3 formes: Fm = (        1.F0 + 2.F1 + 1.F2        ) /4
n = 4 formes: Fm = (    1.F0 + 3.F1 + 3.F2 + 1.F3     ) /8
n = 5 formes: Fm = ( 1.F0 + 4.F1 + 6.F2 + 4.F3 + 1.F4 ) /16

expressions where we see the coefficients of Pascal's  triangle appearing,  leading to the following 
general expression in the case of n forms :

MI( Fi ) = ∑
i
 C

n-1
i . Fi / 2(n–1)

with  C
n
i = n!/(i!.(n–i)!) and i in [0,n–1]

Note the following property, requested for a valid linear combination :

∑
i
 C
n-1

i / 2(n–1) = 1

This type of coefficient, the particular approach used in this study and some more properties to be 
seen later lead us to proposing the name « pascalian forms » or « pForms »  for this family (with the 
derived notations : pCurve, pSurface, pVolume, etc.), the letter  « p » refering to the « P » for Pascal and 
the fact that these forms are all dense sets of points, not continuous sets of points leading to forms that 
are not quite equivalent to the forms in ordinary geometry, even if they can be as close as one might 
wish. A lot could be said about the question of continuity...

Comment 1 : long before the XVIIth century French philosopher and mathematician Blaise Pascal, 
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Omar  Khayyam,  an  Iranian  mathematician  in  the  XI/XIIth  century  and  Yanghui,  an  XIIth  century 
mathematician, had studied the properties of this triangle of numbers. So pForms could have been called 
kForms or yForms, khayyamian or yanghuian, but their pronunciation is harder for an occidental speaker 
than pascalian forms. So why not « pascalian » ?

Comment 2 : these pascalian forms are not new. Classic literature on the subject refers to Bézier 
curves and surfaces that were studied from back to front, using a diversity of approaches : Pierre Bézier, 
an Engineer at Renault,  used an algebraic/analytical approach constructed on Bernstein's coefficients ; 
Paul  de  Casteljau,  an  Engineer  at  Citroën,  preferred  to  study  the  geometric  and  recursive  aspect. 
B_splines and NURBS, are important extensions of these. But their presentation often results in a forest 
of notations and definitions that are often obscure, and out of touch with simple things, with fundamental 
properties  and  primitive  gestures.  By  choosing  to  limit  the  approach  to  a  handful  of  elementary 
geometrical operators applied to a set of points, combined with material representation that can be limited 
to a simple string to draw segments and find their midpoint, we maintain contact with the simple gestures 
of freehand drawing, leading quite naturally to an easy approach to forms belonging to more complex 
spaces, notably immersed forms in the next chapter.

Comment 3 : pascalian forms are a sub-set of the set of valid forms obtained by recursive linear 
combinations of points,  valid because the sums of the coefficients are always unitary.  They keep the 
properties of linear forms and could constitute a good basis for approaching more complex forms, like 
surfaces defined by implicit equations or equations containing transcendant functions  (trigonometric, for 
instance) or produced by iterative processes like geodesic curves and minimal surfaces as solutions to 
differential  systems of the Laplace type. They could be used as the initial  terms of a development in 
series of a form at one point,  (tangent plane to a surface, curved facet or osculating biquadric,…), to 
analyse the behaviour of diagonals, and beyond that, to envisage a whole range of local geometry.

Having given the general definition of pascalian forms, we can now analyse their main properties as 
well as their variations and combinations.

figure 13.2 and 13.3 : a curved cube (pV322) constructed on two ruled paraboloids (pS32) ;  
transparent yellow pV332 constructed on two pS33, its diagonal surface in yellow marbles  (pS42 )  

and yellow diagonal curve ( pL6 ).
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2 operations, properties
Summary of this section  :

• 2 operations, properties 

• 21 fundamental operations 

• 211 subdivision 

• 212 degree elevation  

• 213 reparameterising 

• 214 extractions, tangent axes 

• 2141 pFgetSubForm() 

• 2142 pFgetPoint() 

• 2143 pFgetPijk() 

• 21431 case of a pCourbe 

• 21432 case of a pSurface 

• 21433 case of a pVolume 

• 22 embeddings 

• 221 interpolation 

• 222 diagonalisation 

• 223 immersed pFormes 

• 2231 one point in a pS22 

• 2232 two points in a pS22 

• 2233 two points in a pS23 

• 2234 two points in apSurface 

• 2235 three points in a pSurface 

• 2236 generalisation 

• 23 interface 

• 231 transformations 

• 232 representation

We have to remember that pForms are nothing but Bézier forms approached in a deliberately unitary 
and simple manner, and inheriting all their properties. We particularly refer to, in the case of pCurves : 

• convexity : the pCurve is contained within its control polygon ; 

• affine  invariance  :  the  transform  of  a  pCurve  is  the  pCurve  constructed  on  control  point 
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transforms ; 

• derivation : the « derivative » (we should say hodograph) of a pCurve (pLn) is a pCurve (pLn-
1) defined by initial control point differences (the number of points is thus decremented from 1) 
; the control points at the extremities immediately given the axes tangent to a pCurve (Serret-
Frenet's TNB trihedron) ; 

• cutting  the  control  polygon  into  two  concatenates  to  new  subcontrol  polygons,  allowing 
effective  tracing  of  the  pCurve  using  a  recursive  approach,  immediate  application  of  de 
Casteljau's algorithm, including its generalisation to immersed pCurves.

These properties extend to pSurfaces and beyond to all pForms. For more information, you can refer 
to the bibliography in the appendix. 

In  what  follows,  we  have  chosen  to  analyse  pForm  properties  by  describing  the  operators 
implemented  in  POVRAY/pFlibs,  some  of  which  were  already  used  in  the  previous  chapter.  The 
following will be presented : 

1. fundamental  operators  used  to  subdivide  pForms,  change  the interval  of  definition,  elevate 
degree, transform in space (translations, rotations, homotheties) and display ; 

2. a particular family of operators, the get() operators, to retrieve a subform, a point of a pForm 
and the local axis ; 

3. finally  a  family  of  operators  associated with  an  important  property  of  pForms,  embedding 
operators, extending the definition of pForms to curved spaces.

21 fundamental operations

Summary of this section : 

• 211 subdivision 

• 212 degree elevation 

• 213 reparameterization

• 214 extractions, tangent axes 

• 214.1 pFgetSubForm() 

• 214.2 pFgetPoint() 

• 214.3 pFgetPijk() 

The  following  will  be  studied  :  operators  for  pFsubdivision(),  pFelevation(),  pFstretch()  and  the 
extraction operators pFgetSubForm(), pFgetPoint() and pFgetPijk(). The prefix pF_____() indicates the 
applicability of the operator to any type of pForm, otherwise the operator can only be envisaged for a 
subset of pForms, like pCurves, for example.
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211 subdivision

Applied  to  three  points,  for  example,  the  operator  MIR()  produces  an  infinite  set  of  points 
constituting  a  parabolic  arc.  For  practical  purposes  we  have  defined  an  operator  noted  as 
« pFsubdivision() » starting a recursion for a number of steps that can only be finite and thus producing a 
finite  number  of  points.  Furthermore,  to  avoid  having  to  define a  pFsubdivision()  operator  for  each 
starting point,  these points  are grouped in a table sent to the operator as a parameter. This table can 
contain either the points or other tables of points, making it possible to extend the application of the 
operator  to  pForms of  a  bigger  dimension  ;  as  POVRAY is  easily  able  to  process  four-dimensional 
vectors, we will stop at 4, for practical purposes, i.e., at pForms of dimension 4. For a given pForm (a 
table of sub–pForms that can be reduced to  points),  the  call  to  the pFsubdivision()  operator  will  be 
written as :

#local pForm = pFsubdivision( dim, pForm, recursion )
with dim = a whole number between 1 and 4 
and recursion = a vector containing 4 reals >=0

to produce a new pForm, a table containing a subdivision of the initial table, that is « closer » to the 
pForm theoretically obtained after an infinite number of recursions. We will agree that  the initial table 
and the final pForm are equivalents, refering to a table of three points as a parabola, for instance, in view 
of  the fact that  the 3 points  lead to a parabola  by applying the theoretical  operator  MIR()  and to  a 
polyline as close to the parabola as we wish, by applying the « real » pFsubdivision() operator.

figure 211 : de Casteljau's algorithm, for t=1/2, then t=1/4 and t=3/4..
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212 degree elevation

One of the conditions for applying operators MI() and MIR() that has remained in the background up 
to now, was that the pForms had to be of the same type, the same dimension, of course, but also the same 
number of definition subforms (the same degree in classic terminology). Looking for the midpoint form 
of a pL2 (segment) and a pL3 (parabola) seems pointless at first..., unless the segment is considered as a 
« degenerate » parabola constructed, for example, on three aligned and equidistant points. Note that the 
contrary is generally impossible ; you can't reduce a parabola to a segment, unless it is degenerate, i.e. 
constructed on three aligned points. To elevate the degree of a parabola, 4 points are defined according to 
the points of the parabola :

q0 =  p0
q1 = (p0 + 2*p1     )/3
q2 = (     2*p1 + p2)/3
q3 =              p2
the midpoint of a parabola (p0,p1,p2) is written:
pm = ( p0 + 2*p1 + p2)/4

= ( q0 + 3*q1 + 3*q2 + q3)/8

an expression in which we recognise the cubic midpoint(q0,q1,q2,q3).

figure 212 : degree elevation of a pL3 (parabola), to become a pL4 (degenerate cubic) then a true 
cubic.

As a general rule,  we are led to  defining an operator  noted as pFelevation()  which,  applied to  a 
pCurve pLn will produce the « same » pCurve (pLN) controlled by N>n points, applied to a pSurface 
pSmn will produce the same pSurface (pSMN) controlled by M>m and N>n points, and so forth for any 
pForm of any dimension. For the moment, the implementation is operational for pCurves and pSurfaces, 
and is pending for pForms of any dimension, that are of no particular importance for practical purposes. 
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The call for the pFelevation() operator will be written thus :

#local pForm = pFelevation( dim, pForm, elevation )
with dim = a whole number between 1 and 2  
and elevation = a vector  containing 2 reals >=0

213 reparameterization

figure 213.1 : curved sub-facet defined by two points p0 and p1.

Let's not forget that pCurves are Bézier curves and that a pL3 (parabolic arc) could, for instance, be 
written in the following algebraic form :

p = (1–u)2.p0 + 2.(1–u).u.p1 + u2.p2

where p0, p1 and p2 are any three points in space, u a real number in the interval [0,1], and p any 
point of the parabola lying between p0 and p1. But the algebraic expression produces another point in the 
parabola for a t value in any interval [a, b],  a and b can be infinite.

As a pL3 is initially defined by 3 points (p0,p1,p2) between the endpoints p0 and p1, it could be 
useful to stretch (or restrict) the definition interval to the portions lying between any two points of the 
parabola, pA and pB, thus leading us to define an operator noted as pFstretch(). Applied to a pCurve, this 
operator will create a sub-curve between the two specified points as curvilinear abscissa u0 and u1 ; 
applied to a pSurface, it will create a sub-facet between the two points specified as 2 curvilinear abscissa 
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and ordinates (u0,v0) and (u1,v1), and so forth up to  dimension 4.

The call for the pFstretch() operator is written thus :

#local pForm = pFstretch( dim, pForm, pA, pB )
with dim = an integer between 1 and 4 
and pA, pB = two points written in R4 (  )

to produce a new pForm, « immersed » in the first between points pA and pB. Other embeddings will 
be envisaged later, leading to new generalisations of pForms.

figures 213.2 and 213.3 : resetting the parameters of a pL4 (cubic), and a pS33 (biquadric) resulting 
in the restriction of these pFormes.

214 extractions, tangent axes

Three « get() » operators, are defined to find a sub-form generating the pForm, giving a point of the 
pForm, and the local axis at this point.

2141 pFgetSubForm()

A pForm is produced by applying operator MIR() to a table of sub-forms. Operator pFgetSubForm() 
turns the generating sub-form for a given value « u » ; for u comprised in the interval [0,1] the sub-form 
will be contained in the pForm. The call is written as :

#local pForm = pFgetSubForm( dim, pForm, u ) 
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with dim dans [1,4] and u in R

2142 pFgetPoint()

Recursive application of the preceding operator pFgetSubForm() pushed to the limits will return a 
point p to R4 ; this is what is produced by operator pFgetPoint() whose call syntax is as follows -cf figure 
2143.1 - :

#local P = pFgetPoint( dim, pForm, p )   
with dim in [1,4] and p in R4

Note that parameter p is a point in R4 ; in the case of a pSurface, for example, we would write :

p = pFgetPoint( 2, pSurf, <u,v,0,1> ).

2143 pFgetPijk()

The study of local properties at a point of a pForm begins by calculating the local axis at this point. 
We will examine the case of curves, surfaces and volumes.

21431 the case of a curve

The local axis at a point in a curve (called a Serret–Frenet trihedron) is the set of three unitary vectors  
constructed on the tangent at the current point, the normal contained in the osculatory plane to the curve 
at this point and the binormal perpendicular to this plane -cf figure 2143.4 -. In the case of a pCurve these 
three vectors are easy to calculate at the original control point ; let p0 be this control point, p1 and p2 the 
two following control points :

1. the vector carried by p0 and p1 is the vector tangent at p0 to the curve ; 

2. the plane defined by points (p0,p1,p2) being by construction osculatory to the curve at p0, the 
vectorial product of vectors p0p1 and p0p2 gives the binormal ; 

3. the vectorial product of the binormal and the tangent gives the normal.

To calculate the Serret–Frenet trihedron at a point other than the first point of control, for instance, at 
the curvilinear abscissa « s » point, calculate the equivalent curve starting from this point, i.e., by shifting 
the interval  of  definition  from [0,1]  to  [s,s+1]  and by calculating the trihedron  at  this  new point  of 
departure. It should be noted that the Serret–Frenet trihedron is not defined for all points on a segment, 
and for "true"  curves,  on the line of the inflection points,  and the osculatory plane is undetermined. 
Moreover, as the curvature inverts at an inflection point, the trihedron shifts 180° producing the abrupt 
torsion of tubular surfaces constructed on the Serret–Frenet trihedron, dealt with in paragraph 323.
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21432 the case of a surface

The local axis at one point is the set of three unitary vectors constructed on two tangents at the 
current  point  (tu/|tu|,tv/|tv|),  with  the  normal  perpendicular  to  this  plane  (vectorial  product).  As  an 
analogue to what we saw earlier, these three vectors are easy to calculate at the starting control point; let  
p00 be this control, p01 and p10 the following control points in each  direction :

1. the vectors carried by pairs (p00,p01)  and (p00,P10)  are tangent  to the surface at  p00,  but 
nonorthogonal to each other ; 

2. the vectorial product of these two vectors is normal to the tangent plane at this point.

Calculating the tangent axis at another point will be done in a similar way to that used for the curve 
by shifting the definition interval -cf figures 2143.1 to 2143.3-.

21433 the case of a volume

The local axis at a point is simply constituted by the triplet of unitary vectors (tu/|tu|,tv/|tv|,tw/|tw|) 
constructed at this point and the following 3 points suivants on axes u,v,w. Note, however, that this axis 
is not orthogonal.

Operator pFgetPijk() brings back the local axis in the case of pCurves and pSurfaces, call syntax :

#local Pijk = pFgetPijk( dim, pForm, p )  
with dim in [1,2] and p in R4

Comment: In the case of a curve, the (Serret-Frenet) axis at each point of a curve is orthonormed, in 
the case of  a surface the tree vectors  are unitary  but  the two vectors  tangent  to  the surface are not 
orthogonal to each other, in the case of a volume, the three vectors are unitary but not orthogonal to each 
other. Calling on concepts of norm and orthogonality is not really coherent with the principles of any 
affine geometry considered to be free of metric theory. We will look later (323 Tubular surfaces) at the 
adverse  effects  of  such  an  introduction,  to  the  extent  that  one  might  wonder  about  the  interest  of 
introducing norm and orthogonality into tangent axes. The question has been raised ...
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figures 2143.1 to 2143.4 : operator pFgetPijk() brings the tangent axis to a pSurface or a pCurve.
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22 immersions

Summary of this section:

• 221 interpolation 

• 222 diagonalisation 

• 223 immersed pForms 

• 2231 a point in a pS22 

• 2232 two points in a pS22 

• 2233 two points in a pS23 

• 2234 two points in a pSurface 

• 2235 three points in a pSurface 

• 2236 generalisation

In the first part we saw the importance of the operator DIAG() in the very defining of a  pSurface, 
producing  a  pL3  (parabola)  in  a  pS22  (curved  facet),  a  pL5  in  a  pS33  (biquadric),  a  pS32  (ruled 
paraboloid) in a pV222 (curved cube), etc… These diagonals will prove to be the basic constituents of 
these pSurfaces and beyond these, to all pForms, giving rise to the possibility of a whole geometry in 
curved  surfaces.  In  the  process  it  will  be  necessary  to  study  the  conditions  in  which  a  pForm can 
interpolate an array of points, (which is not the case for the control points, apart from the endpoints). And 
finally we will see the emergence of some interesting properties for embedding pForms in other pForms, 
that seem to justify the « pascalian » approach to curved forms in themselves.

221 interpolation

pCurves do not  interpolate  intermediary control  points.  We might  wish to work with the control 
points along the pCurve, generating their « real » control points in the background. There is no unique 
solution, several curves can interpolate a series of points, according to what could be called the respective 
weight associated with these points, and/or other conditions for the tangents, curves, etc... In this study, 
we will  consider  that  the  interpolated  points,  called knots,  form an evenly  distributed  series  on  the 
abscissa i/N with i=[0,N], and the reader is free to go on from there if he wishes ;) ...

The calculation is made by expressing these points (knots) according to the control points of the 
desired  pCurve  and  by  inverting  the  linear  system thus  formed.  Below are  details  of  the  solutions 
corresponding to the common cases of the pL3 (parabola), the pL4 (cubic) and the pL5, points b0 to b4 
being the knots to interpolate :

- case of a parabola pL3:
#local L3 = array[3]
#local L3[0] = b0;
#local L3[1] = (–b0 +4*b1 –b2)/2;
#local L3[2] = b2;
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- case of a cubic pL4: -cf figure 221.1-
#local L4 = array[4]
#local L4[0] = b0;
#local L4[1] = (–5*b0 +18*b1  –9*b2 +2*b3)/6;
#local L4[2] = ( 2*b0  –9*b1 +18*b2 –5*b3)/6;
#local L4[3] = b3;

- caes of a pL5:
#local L5 = array[5]
#local L5[0] = b0;
#local L5[1] = (–13*b0 +48*b1  –36*b2 +16*b3  –3*b4)/12;
#local L5[2] = ( 13*b0 –64*b1 +120*b2 –64*b3 +13*b4)/18;
#local L5[3] = ( –3*b0 +16*b1  –36*b2 +48*b3 –13*b4)/12; 
#local L5[4] = b4;

Beyond this,  it  is better to  use a general method,  and we propose in  the POVRAY/pFlibs  library an 
inversion operator based on the Gauss–Jordan algorithm, which proves to be very fast and well adapted 
to the problem in hand. This operator is only implemented, for the moment, for curves (pLinterpolant()), 
and for surfaces (pSinterpolant()) with the following call syntax :

// curv array of points
#local curve_interpolant = pLinterpolant( curv )     
// surf array of points
#local surface_interpolant = pSinterpolant( surf )    

figures 221.1 and 221.2: pl4 interpolating 4 points, and pS55  interpolating 25 points.
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222 diagonalisation

By systematically studying  the expression of the midpoint of a pSurface from pS22 to pS44, we 
have demonstrated the diagonal control points expressed according to the pSurface control points. An 
« orthonormed » representation of the pSurface - the pSurface becomes a unit square - shows the even 
distribution of these points on the diagonal inducing a general expression that was used in by an operator 
pFdiagonalisation() applicable to any pForm of any dimension. The call for this operator is simply this :

#local diag = pFdiagonalisation( dim, pForm ) // with dim>=2

and produces a pForm of a smaller dimension, the first example of a pForm immersed in another 
pForm.

223 immersed pForm

We will now reconsider diagonals from a more general angle, leading to the construction of pForms 
immersed in other pForms. We will start by studying the curves it is possible to trace in pSurfaces, after 
brief consideration of the point in a surface.

2231 a point in a pSurface

figures 223: a point in a pS22 (curved facet), and orthonormed representation.

Any point of a pSurface is perfectly defined by the data of two real numbers (curvilinear coordinates) 
usually comprised in the interval [0,1] ; in fact there is nothing to stop one going beyond this interval, the 
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surface is perfectly defined in the interval [-infinite, +infinite]. In POVRAY/pFlibs syntax, the operator 
pFgetPoint() whose call syntax for a pSurface is the following :

#local P = pFgetPoint( 2, pSurface, p )   
with input p = <u,v,0,1> and output P = <x,y,z,t>

waits for a point p defined in the local (curvilinear) axis in the form of <u,v,0,1> and brings a point P 
to global space in the form <x,y,z,t>, cf 2142. Using this operator, it is possible to immerse any curve, 
and even any surface, in a pSurface ; a circle, for instance, defined by its canonical parametric equation 
P(t) = [cos(t), sin(t)] in the curvilinear axis attached to the surface, can thus be transformed point by point  
into a curved curve plated on the surface. The nature of this punctually defined curved curve is unknown 
at this stage, and the aim of the subsequent study is to find it out ; we'll start with the curves that are the 
easiest to draw on a pSurface, curves defined by two points.

2232 two points in a pS22

figures 2232.1 and 2232.2: an ipL2 (iSegment) passes through two points of a pS22, and an iPolyline 
passes through several.

First of all let's consider the simplest curved surface, the pS22 (curved facet). Any two points p0 and 
p1 belonging to the pS22 unitarily  define an immersed sub–pS22,  denoted  ipS22,  and thus a single 
diagonal curve belonging to it, a parabola (pL3) linking the two points p0 and p1.

For an « inhabitant » of the space outside the surface, this curve is a parabola defined by 3 points, but 
for an « inhabitant » of the surface who knows nothing of the space in which the surface is immersed, the 
curve linking two points p0 and p1 acts as a « classic » segment. The curve is perfectly defined by the 
data of the two points (the third point does not belong to the surface and the inhabitant does not know of 
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it) ; it is « isocline » in the sense that it cuts the generative lines following a « slope » that is constant as it 
is defined ( the recursive incrementation of divisions by two is equal in both directions) ; and by defining 
the metrics on the basis of the number of points defining it, one should even be able to speak in terms of 
a geodesic curve. For these reasons this segment will  be called an « immersed segment » denoted as 
« iSegment ».

To construct an immersed segment between two points P0 and P1 in a pS22 is like constructing the 
diagonal of the sub–facet ipS22 constructed on these two points, i.e., a parabola defined by three points 
(B0, B1, B2) ; as the endpoints are known (B0 = P0 et B2 = P1), the only point to determine is the 
intermediary point B1. We know the midpoint P1/2 of facet ipS22 constructed on (p0,p1) :

#local P1/2 = pFgetPoint( 2,pS22, <1/2,1/2,0,1>);

Inverting the expression giving this point as the midpoint of the external parabola :

P1/2 = MI( B0, B1, B2 ) 
= (B0 + 2*B1 + B2)/4 
= (P0 + 2*B1 + P1)/4

we find :

B1 = ( –P0 + 4*P1/2 –P1 )/2

and the parabola being sought :

pL3 = MIR( P0, (–P0 + 4*P1/2 –P1 )/2, P1 )

« Internally », forgetting the parabola, we are naturally led to extending the definition of operators 
MI() and MIR(), and treating this curve as an immersed pascalian curve, denoted ipL2, we can write :

P1/2 = MI( P0, P1 )
ipL2 = MIR( P0, P1 ) 

= pL3

A door is now open to define pascalian forms in curved spaces, at least in pForms. To begin with, this 
involves going beyond the simple case of the curved facet pS22.

2233 two points in a pS32

In the case of a pS32 (ruled paraboloid), constructing the immersed segment between two points  P0 
and  P1  is  like  constructing  an  « external »  cubic  defined  by  four  points  (B0,  B1,  B2,  B3)  ;  as  the 
endpoints are known  (B0 = P0 et B3 = P1), the points to determine are intermediary points B1 and B2. 
Points P(1/3) and P(2/3) at 1/3 and at 2/3 of the diagonal of the ipS32 constructed on (P0,P1) as points at 
1/3 and at 2/3 of the pL4 :

P1/3 = (8.B0 + 12.B1 + 6.B2 + B3)/27
P2/3 = (B0 + 6.B1 + 12.B2 + 8.B3)/27

and this is inverted to arrive at the two intermediary points :
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B1 = (–5.P0 + 18.P1/3 –9.P2/3 + 2.P1)/6
B2 = (2.P0 – 9.P1/3 + 18.P2/3 – 5.P1)/6

and the cubic being sought. 

The midpoint of the cubic being known, here again we can write :

P1/2 = MI( P0, P1 )
ipL2 = MIR( P0, P1 ) 

= pL4

2234 two points in a pSurface

We notice  that an ipL2 (immersed segment) is a pL3 in a pS22,  a pL4 in  a pS32.  We continue 
likewise to a pL5 in a pS42 or a pS33. Generally, an ipL2 (immersed segment) in a pSmn is a pCurve 
controlled  by  N  =  (m+n–1)  points.  These  points  are  calculated  from an  even  distribution  over  the 
immersed segment (ipL2) of N points P(i/(N–1)) with i = [0, N–1]. The pCurve interpolating these points 
is the solution to the problem, and we can write :

P1/2 = MI( P0, P1 )
ipL2 = MIR( P0, P1 ) 

= pLN  with N = m+n-1 

So, in a more general way than using the pFdiagonalisation() operator, we now know how to draw 
straight « segments » linking any two points in any pSurface, and a number of comments can be made 
about this important property :

Comment 1 : from this generalised basis for the segment, we can extend to concepts of parallelism, 
orthogonality, and angle, study the intersection of two iSegments, its divisions, prolongations, etc..., thus 
defining geometry in pSurfaces.

Comment 2 : an iSegment is not normally a geodesic, it is not the shortest route between two points,  
the  normal  at  each point  is  not  colinear  to  the normal at  the surface at  this  point  ;  but  it  might  be  
interesting to take iSegments as a basis for the study and construction of the geodesics of a pSurface.

Comment 3 : the idea of considering a parabola as a simple segment immersed in a curved facet 
could simplify a problem that's difficult to treat in classic euclidian space by reducing it to a simpler 
problem in curved space defined by the facet. Note that there is an infinite number of facets admitting a 
parabola as a diagonal : as P0,P1,P2 are given,  all the pairs of points q0 and q1 such that P1 is the 
midpoint, would be suitable.

Comment 4 : in the case where the pSurface is taken back to its orthonormed form (unit square),  
these segments are indeed rectiliear, and any pSurface and its immersed curves could be considered as an 
« anamorphosis » of the orthonormed form.

Comment 5 : constructing pForms in a space free of any metrics opens the possibility of defining 
segments immersed in « curved spaces », at least for curved pForms. Remember that in the introduction, 
we said that in order to find the midpoint of points on a surface, we envisaged « stretching the string by  
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placing  it  on  the  curve following  the  one curved,  or  geodesic,  curve constituting  the  shortest  route  
between these two points and along which the normal to the string (in the osculator plane) is colinear to  
the normal to the surface ». Following the geodesic between two points was the condition imagined to 
ensure the unicity of the path. In the case of a pForm, the geodesic can be replaced by the immersed 
segment, which is far more practical to construct, using a simple piece of string : a surveyor who had to 
draw a « straight » line on a piece of ground similar in form to a curved facet, i.e., a parabola in our  
space, would easily place the midpoint of a stretched rope following a straight line between the two axes 
opposite the axes to be linked, and from the three control points, would construct the first midpoint of the 
immersed structure, and so forth.

Beyond the two given points of a pSurface, polylines could be envisaged composed of immersed 
segments  linking  the series of  points,  and between these,  triangles,  regular  polygons  tending  toward 
immersed circles, sinusoidal curves, etc., could be traced. It might be more fruitful to construct pCurves, 
starting from the immersed parabolas, or ipL3.

2235 three points in a pSurface

figures 2235.1 to 2235.3 : ipL3 (immersed parabola) in a pS22 and in a pS33 ; ipL4 (immersed cubic) 
in a pS22.

Similarly, a generalisation of operators MI() and MIR() is envisaged, such that an immersed parabola, 
or ipL3, could be generated from the three points pertaining to a pSurface. And just as an ipL2 immersed 
in a pSurface is associated with a pCurve in space, we will try to find the pCurve associated with the 
ipL3. Given the way in which pascalian forms are constructed and their "linear" properties, we « know » 
this  pCurve  exists,  it's  « part  of  the  family »  (see  comment  later).  The  construction  process  for  an 
iSegment called for an even distribution of points "aligned" on the surface, and likewise, the construction 
process for an ipL3 will work on an even distribution of points along a parabolic path in the surface 
(think in terms of its orthonormed representation). 

A purely inductive reasoning gives the following results : in the case of a pS22, the curve required is 
a pL5 whose control points are calculated on the basis of an even distribution on the ipL3 of 5 points 
P(i/4) with i = [0, 4]. In the case of a pS33, we can show that a pL9 is required. And  in the general case, 
an immersed parabola (ipL3) in a pSmn is a pCurve controlled by N = (m+n–2)*2+1 points.

66 / 192



pascalian forms | 223 immersed pForm

P1/2 = MI( P0, P1, P2 )
ipL3 = MIR( P0, P1, P2 ) 

= pLN
with N = (m+n-2)*2+1

figures 2235.4 to 2235.8: from 3 points, construction of a blue ipL3 (immersed parabola) and its 
yellow controlpolygon in a pS33 (biquadric).
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2236 generalisation: immersed pForms

Likewise we will find that an immersed cubic (ipL4) defined by four points pertaining to a pS22 is a 
pCurve of space constructed on 7 points.

In the case of any pCurve immersed in any pSurface we will write :

N = ( m + n – 2 ) * (q–1) + 1
where q is the number of control points 

of the pCurve defined in the pSurface,
and (m,n) are the numbers of control points 

of the pSurface in both directions.

Finally in the case of any pCurve immersed in a pForm of any dimension, based on purely inductive 
reasoning (cf comment), we can « risk » writing :

M = ( m1+m2+..+mi – d ) * (q–1) + 1
where q is the number of control points

of the curve defined in the pForm,
d is the dimension of the pForm,
and (m1, m2, ..., mi) is the number of control points

of the pForm in the different directions (dimensions).

This formula can also be applied to pSurfaces immersed in a pSurface or pVolume, and as a general 
rule to pForms immersed in pForms ; all that is needed, grace to linear properties of pForms, is to reason 
separately for each dimension. Here is a summary table, showing for instance that an ipL3 in a pS33 is a 
pL9.

pS22 pS32 pS33 pS43 pS44 pV222

ipL2 pL3 pL4 pL5 pL6 pL7 pL4

ipL3 pL5 pL7 pL9 pL11 pL13 pL7

ipL4 pL7 pL10 pL13 pL16 pL19 pL10

ipS22 pS33 pS44 pS55 pS55 pS77 pS44

ipV222 / / / / / pV444

Once the number N of control points defining the pCurve is known, an even distribution of N points 
is calculated along the immersed pCurve, and the pCurve interpolating these points is the solution of the 
problem.

This result is remarkable, in the sense that it establishes a duality between two representations of the 
same form, with or without control point  interpolation,  whether or not immersed in a more complex 
space. But the basic result is that a pForm immersed in another pForm is equivalent to a pForm in the 
surrounding space elevated to a higher degree ; herein lies the interest of the immersed form concept, and 
this can be said for all cases of pForms. All pForms rely on using two operators  MI() and MIR() applied 
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first to any set of points in space, then to generated forms, then to the forms pertaining to these forms, 
etc…. All these pForms are based on linear combinations with Pascal coefficients. In the next chapter, we 
will examine new combinations of these pForms in order to extend their range of application to more 
complex cases, starting with forms based on circles.

Comment : affirming the previous results, whether for correspondence formulas for control points or 
affirmation «... the pCurve interpolating these points is the solution of the problem » implies a rigorous 
mathematical demonstration that has not yet been given. pForms are in fact nothing more than multilinear 
combinations of points, a parabola is simply a degenerate bilinear form, a cubic is a degenerate trilinear 
form, and so on. It seems reasonable to think that the results stated for the first forms are transmitted to 
the more complex pForms they generate, and a precise mathematical formulation of this reflection could 
constitute a rigorous demonstration. The algorithms developed in computer implementation constitute an 
« experimental machine » producing pForms and testing their properties, and once running, these have 
validated - at least visually -  all the scenarios envisaged. These algorithms may be of demonstrative 
value in their own right ! And if it turned out that the immersed curves were not immersed outside the 
points  of  the  pSurfaces  they  interpolate,  this  would  probably  have  little  effect  –  at  least  -  on  their  
practical use. Moreover, from a purely intellectual point of view, once the worst is over, a whole field of 
experimentation opens up, looking for deeper mathematical reasons to invalidate these affirmations. 

As for  the POVRAY/pFlibs  implementation  of  the  operator  pFembedding(),  apart  from operator 
pFdiagonalisation()  that  can  only  produce  the  iSegments  in  any  pForm,  two  versions  have  been 
developed, the first applicable to all pForms but producing the ipForm without its control points, and the 
second applicable to pSurfaces producing an ipCurve with its control points.

#local iForm = pFimmersion( dim, pForm, idim, ipForm ) 
with dim, idim in [2,4], f and imf two pForms

#local ipCourbe = courbe_in_surface( courbe, surf )

figure 2236.1 to 2236.3 : an ipL2 in a pS33 is a pL5 of the space ; an ipL3 in a pS33 is a pL9 of the 
space ; an ipL4 in a pS33 is a pL13 of the space.
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figures 2236.4 and 2236.5: a parabola and a cubic in a biquadric.

23 interface

Summary of this section :

• 23 interface 

• 231 transformations 

• 232 representation 

• 2321 fundamental form 

• 2322 specific forms

Once pForms have been defined, they can then be manipulated and visualised. They can be drawn by 
hand - that was the initial aim, after all, to be able to draw them freehand using a string and a few pegs - 
and some hand drawn constructions on squared paper will be given in figures 23.1 to 23.4.

The pFlibs.inc library can also be used, written in the POVRAY environment and designed for this. 
We have  already  used  four  operators,  i.e.,  pFsubdivision(),  pFstretch(),  etc...  and  the  indispensable 
operator draw() to display everything we have been able to imagine, including some we weren't even 
expecting... The transformations (translation, rotation, homothesis) and the particularities of the display 
operator will be analysed below.
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figures 23.1 to 23.4 : pForms can ALSO be constructed by hand: diagonals and parabolas in a curved 
facet ; ruled paraboloid and biquadric with their matching diagonals...

231 transformations

Once a pForm has been defined, it is often necessary to apply to it a translation, a rotation, a scale  
change (scale, homothesis), a sliding deformation (shear), or a more general affine transformation as is 
used in the case of the tubing examined later in the text. In regard to the most general transformation, an 
operator pFtransform() is defined applying a 4x4 matrix to a point in R4 ; this operator is for purely 
internal  use,  for  instance to  construct  the operators  producing  rotating  forms,  tubes,  etc…. The  call 
syntax is the following : 

#local p1 = pFtransform( mat, p0 )       
// the operator rotates p1 transformed from p0

The  standard  operators  used  are  pFtranslate(),  pFrotate()  and  pFscale()  which  do  what  they  are 
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expected to do, i.e., transform the pForms in our R3 space by translations, rotations and homothesis. The 
calls for these operators are written thus :

// be careful: the three operators modify pForm:
// translation of a pForm in R3: 
pFtranslate( dim, pForm, < tx, ty, tz > )
// rotation on three axes Ox,Oy,Oz:  
pFrotate( dim, pForm, < rx, ry, rz > )
// homothesis in relation to three axes Ox,Oy,Oz:   
pFscale( dim, pForm, < sx, sy, sz > )        

figures 231.1 to 231.3: rotations, translations, homotheses applied to a pL4 (cubic).

232 representation

In general, having defined a pForm, then stretched it, transformed and finally subdivided it, you get 
an  irresistible  desire  to  visualise  it…  But  points,  curves,  surfaces,  volumes  and,  even  more, 
hypervolumes,  are  not  represented  in  the  same way.  Furthermore,  there  is  not  necessarily  only  one 
representation for a given form : a volume can be represented by all the points it is composed of, by 
boundary surfaces, by a stack of surfaces (mille–feuilles), by a beam of fibres (normals of the layers of 
the mille–feuilles), by a distribution of tangent axes (tu,tv,n), by characteristic curves such as curvilinear 
coordinated curves, diagonals, etc…

Two types of representation can be distinguished : a general form valid for any pForm, and specific 
forms adapted to pCurves, pSurfaces and pVolumes.

2321 basic form

A pForm  is  basically  just  a  cloud  of  points,  a  multidimensional  array  of  points,  and  its  most 
elementary representation can naturally take the form of a cloud of small spheres. An operator pFdraw() 
is defined for this, with the following call syntax :
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pFdraw( dim, pForm, R )  // with dimension dim and radius R

POVRAY will display a rather dull cloud of black spheres ; for practical purposes a colour or material 
will be applied to this group of spheres, and the following call will thus produce the 4 apexes of a curved 
facet pS22 (or more if the facet has been subdivided) in the form of red spheres with a radius of 0.02.

union { pFdraw( 2, pS22, 0.02) une_couleur( < 1,0,0,0 > ) }

Note that pFdraw() can be applied to pForms of any dimension, including hypervolumes !

2322 specific form

For curves, surfaces, volumes and even hypervolumes, a more adapted form of operator pFdraw() is 
proposed ; a new operator draw() (without the pF prefix to underline its specific nature) simplifies and 
concentrates the writing of the various parameters calling on a number of options as described in the 
following table :

draw( dim, pForme, options ) with: 
1) dim : a real number in the interval [0,4]
2) pForme : any pForm
3) options : partial sum of a set of the following choices :

a) STANDARD : line values by default, red sphere (r=0.02),
b) finesse( recursion ) : select the level of form subdivision 

where recursion = r | < rx,ry > | < rx,ry,rz > | < rx,ry,rz,rt >,
c) point( R ) : draws spheres of radius R,
d) courbe( R ) : draws cylinders of radius R,
e) surface( FACETTES | LISSE | SUPER ) : draws a mesh of 

triangles with sharp or smooth edges with a +or- fine interpolation of 
colours,

f) enveloppe( FACETTES | LISSE | SUPER ) : draws the 6 sides of 
a volume,

g) feuilles( FACETTES | LISSE | SUPER ) : draws a volume as a 
mille-feuilles,

h) fibres( rayon ) : draws the fibers of a volume,
i) normales( rayon, longueur ) : draws the normals to a surface,
j) repere_tangent( rayon, longueur ) : draws the axes tangent to 

a curve or a surface,
k) couleur( r,g,b,t  ) : selects a colour and opacity,
l) matiere( choix ) : choose a material in ( GOLD | MIROIR | 

GRANIT | MARBRE ).

Examples using this operator and the choices available are given throughout this document. Basicaly, a 
curve, a surface and a volume wil be drawn using the following calls :

draw( 1, pCourbe, 
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finesse(5) // recursion level 5
+ courbe( 0.02 ) // line radius 0.02
+ ma_couleur(<1,0,0,0>) ) // red 

draw( 2, pSurface,
finesse(<4,4>) // 4 on U and V
+ surface(LISSE) // smoothing of triangles
+ ma_couleur(<0,1,0,0>) ) // yellow

draw( 3, pVolume,
finesse(<2,2,2>) // 2 on U, V, W
+ enveloppe(LISSE) // the 6 faces of the cube 
+ ma_couleur(<1,1,0,0.5>) )// transparent yellow

 

Other options are available according to needs : hypervolume representation could evolve toward 
more  expressive  combinations  of  layers  and  fibres,  or  integrate  time  management  in  the  form  of 
animations, which POVRAY has no problem handling.
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3 compositions, applications
Summary of this section :

• 31 rational forms 

• 311 conics 

• 312 cones, cylinders, toruses and spheres 

• 313 applications 

• 3131 Viviani's window 

• 3132 immersed circles

• 3133 knots

• 32 composed forms 

• 321 meshes 

• 322 produced surfaces, surfaces of revolution 

• 323 pipe surfaces 

• 324 affine surfaces 

• 325 parallel forms 

• 326 developed surfaces 

• 33 special linear combinations  

• 331 symmetrical forms 

• 332 coons surfaces  

• 34 concatenations, splines 

• 341 non-interpolating splines  

• 342 interpolating splines 

• 343 NURBS 

• 35 deformation operators  

• 36 geometry in pForms 

• 37 other pForm operators 

Concluding  the  first  approach,  chapter  1  allowed  us  to  define  pascalian  forms  generally,  and 
« chapter  2 »  presented  the fundamental  properties,  without  implying  any  particular  position  for  the 
control  points.  This  chapter  will  enable  us  to  discover  the  particular  arrangements  of  control  points 
reproducing the classic shapes in geometry  (  circles,  surfaces of revolution,...  )  operators  combining 
several  pForms  to  producing  pipes,  Coons  surfaces,  parallel  surfaces,  useful  concatenations  for 
generating spline curves and surfaces, and enabling us to make a tentative approach to the wonderful 
continent of curved space geometry...
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31 rational forms

Summary of this section :

• 31 rational forms 

• 311 conics 

• 312 cones, cylinders, toruses and spheres 

• 313 applications 

• 3131 Viviani's window 

• 3132 immersed circles

• 3133 knots

• 3134 geodesics

We already stated in paragraph 111 that the points were defined in R4 in the form referred to as 
homogenous coordinates (projective form) : <x,y,z,t>, associating the point in R4 with the point in R3 
defined as <x/t,y/t,z/t>. Up to now, value 1 has always been taken by default as the fourth coordinate ; 
now it's time to examine cases in which t is different from 1. In the case where t varies (in principle t can 
vary from -infinite to +infinite), a given point in R4 will match a set of R3 points defined as <x/t,y/t,z/t>,  
and  a curve defined  in  R4 will  match a set  of  R3 curves ;  note  that  in  this  way  a surface can be 
constructed in R3 from the given of a single curve in R4 !

A pCurve  is  always  expressed  algebraically  in  a  polynomial  form,  the  current  point  of  a  pL3 
(parabolic arc) thus being expressed according to the 3 control points :

p = (1–u)2.p0 + 2.(1–u).u.p1 + u2.p2    // u in [0,1]

or explicitly, by listing the 4 coordinate points as (x, y, z ,t) :

x = (1–u)2.x0 + 2.(1–u).u.x1 + u2.x2

y = (1–u)2.y0 + 2.(1–u).u.y1 + u2.y2

z = (1–u)2.z0 + 2.(1–u).u.z1 + u2.z2

t = (1–u)2.t0 + 2.(1–u).u.t1 + u2.t2

The coordinates  of the R3 point  defined as <x/t,y/t,z/t>  will  be the « rational »  expressions,  i.e., 
polynomial quotients (ratios) ; so we speak of rational curves, and beyond of rational forms. Pascalian 
forms, always defined in R4 produce rational forms in R3 in the general case, reducing to polynomial 
forms in the case where the control points all have a value of 1 for the fourth coordinate.

But what are rational forms for ?
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311 conics

If we remain in R3 space, a pCurve can in no way represent the arc of a circle, which is a pity when 
you consider the importance of this type of curve and the surfaces constructed on circles like cones, 
cylinders, toruses, spheres and beyond to all the surfaces of revolution ! 

But the « Theory of Conics » revealed to us by the Greeks, highlights the fundamental relationships 
between curves that are as different in appearance as a circle, a hyperbola, an ellipsis and a parabola ; all  
these curves ARE conics, sections of a cone with a circular base on a more or less inclined plane to the 
axis of the cone. Seen from the apex of the cone, these are all identical and, notably, the base circle can 
always be considered as as the « conic » projection of the parabolic intersection of the cone by a plane 
parallel to a generatrix.

figures 3111.1 to 3111.3: the 4 conics as pL3 curves ; 3 arcs of a circle from a pL3, a pL4 and a pL5 ; 
3 approaches to a complete circle with a pL3, a pL4 and a pL5.

To grasp this fundamental result, let us remember the analytical expression in R3 of a circle with a 
radius of 1 centered on the origin in the Oxy plane :

P(theta) = [ cos( theta ), sin( theta ), 0 ], theta in [-pi,pi]

Changing the variable u = tangent( theta/2) transforms this expression into a rational form :

P(u) = [ (1-u2)/(1+u2),2u/(1+u2),0 ], u in ]-infinite,+infinite[

and passing into R4 will transform it into a polynomial expression :

P(u) = [ 1-u2, 2u, 0, 1+u2 ], u in ]-infinte,+infinite[

As the four polynomials are of the second order, two of which are degenerate, each can be expressed 
in the polynomial form defining a parabola in R4 :
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P(u) = (1–u)2.p0 + 2.(1–u).u.p1 + u2.p2
with : p0 = < 1, 0, 0, 1>

p1 = < 1, 1, 0, 1> * sqrt(2)/2 // note that p1.t ≠ 1
p2 = < 0, 1, 0, 1>

Thus, while it is still true that a pCurve cannot represent the arc of a circle, it can naturally generate 
one by conic projection, which is in fact the shift from R4 to R3, a simple perspective. We are thus able 
to apply reasoning to parabolas in R4 knowing that rendering it in R3 will indeed produce circles. We 
will see that this reasoning remains valid for immersed pForms.

In POVRAY/pFlibs syntax, we will thus define a parabolic arc in this way :

#local r = any value;
#local k = 1/sqrt(2);
#local quart_circle = array[3]
{ < r, 0, 0, 1 >,

< r, r, 0, 1 >*k,
< 0, r, 0, 1 > 

}

Projecting this parabolic arc from R4 into R3 produces a perfect arc of a circle, centered at the origin,  
with radius  r and an angle of 90°.  Other values of k produce ellipses and hyperbolas.  Note that the 
implementation in POVRAY/pFlibs syntax always applies projection R4 -> R3 by default, so this is taken 
care of. The following call will indeed display the red arc of a circle :

draw(1,quart_cercle, finesse(3)+courbe(0.02)+couleur(<1,0,0,0 >)) 

The parabolic arc projects onto a circular arc, but it's possible to imagine other curves of the cone 
whose projection will also be the arc of a circle, in fact ANY cone curve will do. Here are two handy 
examples, two pCurves defined by 4 and 5 control points :

#local semi_cercle = array[4]
{ <  r,   0, 0, 1 >,

<  r, 2*r, 0, 1 >/3,
< -r, 2*r, 0, 1 >/3, 
< -r,   0, 0, 1 >

}

#local k = 1/sqrt(2);
#local semi_cercle = array[5]
{ <  r,     0, 0, 1 >,

<  r,     r, 0, 1 >*k,
<  0, 3/2*r, 0, 1 >*2/3, 
< -r,     r, 0, 1 >*k,
< -r,     0, 0, 1 > 

}
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These two last representations can produce the complete arc of a circle by stretching the definition 
interval using the operator pFstretch(). In the first case (a pL3), it is necessary to work on the interval 
[-infinite,+infinite],  producing  nothing  of  interest,  in  the last  case (a  pL5),  an interval  [-k,1+k]  with 
k=sqrt(2)/2, is sufficient to produce the full circle with a good distribution of points ; it so happens that 
this  last  representation  corresponds  to  the diagonal  of  a biquadric,  a surface constructed  using  three 
parabolas, ... still following ?

figures 3111.4 and 3111.5 : a pL3 and apL4 in R4 in green, and the corresponding arcs of a circle in 
R3 in red.

figure 3111.6 :  a pL5 in R4 in green, and the corresponding arc of a circle in R3 in red.
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312 cones, cylinders, toruses and spheres

Now that the arc of the circle has been incorporated into the pCurve family, the world of pForms of 
revolution opens up before us ! We're going to build these in two stages : firstly, we will compose the 
expressions  of  these  surfaces  « by  hand »,  and  secondly,  we'll  look  for  more  general  composition 
operators leading to the tube and affine forms. So for the moment, by choosing the suitable points to 
define a pSurface, it is easy to create fundamental surfaces of revolution like a portion of a cylinder ; 
torus or sphere. Here are the expressions in POVRAY/pFlibs syntax :

// quarter of a cylinder of radius R and height H :
#local k = sqrt(2)/2;
#local pCylinder = array[2] 
{  array[3] { 

< R, 0, 0, 1 >,
< R, R, 0, 1 >*k,
< 0, R, 0, 1 >
},

array[3] {
< R, 0, H, 1 >,
< R, R, H, 1 >*k,
< 0, R, H, 1 >
} 

}
// sixteenth of a torus of radii R1 and R2:
#local R12 = R1+R2;
#local R2 = abs(R2);
#local pTorus = array[3]     
{ array[3] { 

< 0,   0, -R12, 1 >,
< 0,  R2, -R12, 1 >*k,
< 0,  R2,  -R1, 1 >
},

array[3] { 
< R12,  0, -R12, 1 >*k,
< R12, R2, -R12, 1 >*k*k,
<  R1, R2, -R1,  1 >*k
},

array[3] {
< R12,  0,  0, 1 >,
< R12, R2,  0, 1 >*k,
<  R1, R2,  0, 1 >
} 

}

// eighth of a sphere of radius R :
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#local pSphere = array[3]   
{ array[3] { 
 < R, 0, 0, 1 >,

< R, R, 0, 1 >*k,
< 0, R, 0, 1 > 

},
array[3] { 

< R, 0, -R, 1 >*k,
< R, R, -R, 1 >*k*k,
< 0, R,  0, 1 >*k
},

array[3] { 
< 0, 0, -R, 1 >,
< 0, R, -R, 1 >*k,
< 0, R,  0, 1 >
} 

}

figures 312.1 and 312.2 : 3 pS33 cylinder, torus and sphere and their diagonals; diagonal (pL5) on 
1/16th of a torus (pS33) drawn in the interval [-k,1+k], where k=sqrt(2)/2.

Here again it will be possible to use the operator pFstretch() to create complete spheres, cylinders and 
toruses (of 360°), as we saw for the arc of the circle, using the right pCurves, pL5 being a priori the best  
adapted to interval [-k,1+k].
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figures 312.3 and 312.4 : in a torus, red parallel straight lines, and concentric circles from red to  
yellow..

figures 312.5 and 312.6 : in a torus, white radiating segments, and red circle with its yellow radiuses.
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313 applications

The pS33 and its diagonal pL5 play an important role in several applications. With the diagonal of a 
portion of a sphere built on a pS33, it is thus possible to find the curve known as Viviani's window. By 
embedding a pL5 in a sphere or a torus producing the arc of a circle, we discover an example of point 
confinement leading to infinity in our « straight » space. And the curve known as the Trefoil Knot (knot 
with three crossings) appears as a simple straight line in a toric  geometry.

3131 Viviani's window

figures 3131.1 and 3131.2: Viviani's window is an immersed segment (pL5) in an 1/8th of a sphere 
(pS33) drawn in the interval [-k,1+k], where k=sqrt(2)/2.

The portion of the sphere (1/8th) is a pS33 whose diagonal we know is a pL5. The vertical projection 
of the five control points on the equatorial plane happens to produce the control points of a semi-circle ; 
thus we find the curved curve called Viviani's window, the intersection of a sphere and a cylinder. The 
classic expression of the curve is the following :

x = R*(1+cos(t)),
y = R*sin(t),
z = 2R*sin(t/2)

which is not complicated in itself, but the definition of the tangent trihedron at each point involves 
far more complex expressions. Considering the curve as a pCurve gives access to 5 control points that 
help to draw the curve, as well as to all the pForm operators, notably the one that reduces the tangent 
trihedron at each point.  Plus, knowing that this curve is a simple segment immersed in a portion of a 
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sphere is mentally satisfying ! 

Here in POVRAY/pFlibs syntax are three methods used to construct Viviani's window :

Definition of an eighth of a sphere :

#local R = 1/2;
#local k = sqrt(2)/2;
#local pSphere = array[3]  
{ array[3] 

{ < R, 0, 0, 1 >,
< R, R, 0, 1 >*k,
< 0, R, 0, 1 >

},
array[3]
{ < R, 0, -R, 1 >*k,

< R, R, -R, 1 >*k*k,
< 0, R,  0, 1 >*k

},
array[3]
{ < 0, 0, -R, 1 >,

< 0, R, -R, 1 >*k,
< 0, R,  0, 1 >

} 
}
draw( 2, pSphere, 
finesse < 3,3 > + surface( 0.01 ) + couleur( < 1,1,1,0.5 >) )

1) construction by the embedding method of the diagonal defined and 
subdivided in the surface between points < 0,0 > and < 1,1 >, then 
expressed in R3 :

#local diag = array[2] { < 0,0,0,1 >, < 1,1,0,1 > }
#local pDiag = pFsubdivision( 1, diag, <4,0,0> )
pFimmersion( 2, pSphere, 1, pDiag )
draw( 1, pDiag, point(0.02) + couleur(< 1,1,1,0.8 >) )

2) construction by calling the diagonalisation operator :

#local diag = pFdiagonalisation( 2, pSphere )
draw( 1, diag, finesse(3)+point(0.02)+couleur(< 1,0,0,0.9 >) )
draw( 1, diag, point(0.04) + couleur(< 1,1,0,0.8 >) )

3) construction by defining the diagonal in the surface between points 
< 0,0 > and < 1,1 > , and calling the general operator 
curve_in_surface():
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#local diag = array[2] { < 0,0,0,1 >, < 1,1,0,1 > }
#local diag = courbe_in_surface( diag, pSphere )
draw( 1, diag, finesse(3)+point(0.02)+couleur(< 1,0,0,0 >) )
draw( 1, diag, point(0.04+couleur(< 1,1,0,0.8 >) )

The first method of calculation by immersion is general, it is valid for any ipForm immersed in any 
pForm, but it will not give the control points in R3. The second method only deals with diagonals, and 
thus iSegments, but does have the advantage of producing control points. The last method is for now 
only implemented for pCurves immersed in pSurfaces, but will produce control points for any iCurve. 
Obviously,  all three methods provide the same curve in the present  case. Note that by flattening the 
sphere, we obtain a disc projection whose diagonal is in fact a semi-circle.

3132 immersed circles

We saw how easy it was to place the 5 points of a pL5 to construct a parametered semi-circle in the 
standard interval[0,1]. Using operator pFstretch() with interval definition [-k,1+k], where k = sqrt(2)/2 = 
0.707, we can produce a complete circle with an acceptable point distribution. The problem is that two of 
the control points lead to infinity, and it is never comfortable working with infinite points. Figure 3132.1 
represents the case in which the arc of the circle is immersed in a flat facet, in fact in the surrounding  
euclidian  space ;  in  figure  3132.2  the  facet  is  any  slightly  warped  pSurface,  which  doesn't  actually 
change that much.

By embedding a circle in a finite surface, these points are confined and their behaviour can be more 
effectively visualised. Embedding the pL5 generating a semi-circle in a pS33 generating a torus, clearly 
represents the two points that initially lead to infinity when passing from interval [0,1] to interval [-k,1
+k].  Figures 3132.3 and 3132.4 correspond to embedding in a pS55, whose 25 control points are chosen 
to produce a sphere and a torus, finite and complete surfaces in which the control points of the immersed 
arc of a circle developing into a complete circle are confined to a finite distance.

Here we get a glimpse the apparent similarity with Riemann's sphere as a representation of projective 
space, of Poincaré's straight lines in the hyperbolic plane, and even more so of attempts at representing 
the universe as having an elliptical, parabolic, hyperbolic, and today, a toroidal topology. And also, of the 
use of immersed pForms to represent cosmological theories. An avenue worth exploring !
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figures 3132.1 and 3132.2 : in any plane or curved pSurface, two of the control points of the arc of a  
circle defined by a pL5 will lead to infinity.
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figures 3132.3 and 3132.4 :  left, a white semi-circle (pL5) and its control polygon (segments black to  
yellow ) immersed in a sphere, the definition interval is gradually stretched from [0,1] to [k, 1+k]  
where k=sqrt(2/2), the semi-circle becomes a full circle, the control points remain confined to the 

surface of the sphere ; right, same example with embedding in a torus.
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3133 straight lines that get into knots

 

The staircases in Montreal are well-known for their rather surprising style. They climb up the front of 
small two- or three-storey apartment buildings, twisting around to serve every floor, without hindering 
the windows facing the street,  much like MC Escher's  impossible stairways.  The sculpture shown in 
figure  3133.1  is  the  entry  to  a  competition  won  by  Montreal  architect,  Guillaume  Labelle  (site: 
http://labelle.spacekit.ca/), based on the idea of making a staircase in the form of a curve known as the 
Trefoil Knot (triple loop knot). While the analytical expression of this curve is fairly simple, determining 
the tangent axes (Serret-Frenet) necessary to work out the steps and handrails calls on expressions that 
become fairly heavy and do not convey much. Segments immersed in a torus provide a solution that is 
friendlier  to  analyse,  manipulate  and  represent  the various knots  drawn on  the torus.  The following 
illustrations show some of the stages that were used to work out the steps and handrails of the staircase 
produced.

figure 3133.1 : a sculpture in Montreal, a straight line in toric space !!
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figures 3133.2 to 3133.5 : the complete curve is the concatenation of 6 diagonals ; 6 examples of knots  
from segments immersed at different angles ( producing continuous or noncontinuous curves ) ; 

applied to the Montreal staircase by representing a distribution of Serret-Frenet trihedrons, then the 
binormals (sketching the steps) and normals (sketching the handrails). Note that the handrails  

actually produced are inclined at 45° to be orthogonal to the steps, parallel to the risers.
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32 composed forms

Summary of this section :

• 321 meshes 

• 322 produced surfaces, surfaces of revolution 

• 323 pipe surfaces 

• 324 affine surfaces 

• 325 parallel forms 

• 326 developed surfaces

Up to now the pForms have been constructed « by hand », the control points being positioned « a 
priori ». This is notably the case for the portions of the cylinder, torus and sphere studied above. We are 
now going to automate the creation process, giving access to more complex shapes.

321 meshes

In the chapter on approaching pForms, we were able to construct pForms « by hand » : by applying 
operator MIR() to three pL3 (parabolas), we created a pS33, then pL5, as well as pV222 (curved cubes), 
etc... It is helpful to define the operators that automatically produce pCurves, pSurfaces and pVolumes 
controlled by a larger number of points ; we find a create_line() operator producing a pCurve starting as 
rectilinear  and  controlled  by  an  arbitrary  number  of  points,  a   create_facet()  operator  producing  a 
pSurface that starts flat and finally a create_cube() operator producing a pVolume that starts as perfectly 
cubic, the three pForms produced being of a given size and centered at the origin parallel to the axes. 
Here is an example implemented in  POVRAY/pFlibs in the case of the cube :

#macro create_cube( n1, n2, n3, ttt )  // ttt is the size
  #local f = array[n1]
  #local ff = array[n2]
  #local fff = array[n3]
  #local i=0; #while (i< n1)
    #local j=0; #while (j< n2)
      #local k=0; #while (k< n3)
        #local p = < -0.5+i/(n1-1), -0.5+j/(n2-1), -0.5+k/(n3-1),1 >;
        #local fff[k] = p * ;
      #local k=k+1; #end 
      #local ff[j] = fff;
    #local j=j+1; #end 
    #local f[i] = ff
  #local i=i+1; #end
  f
#end
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One application, among others, of a curved cube beyond the very basic pV222 will be presented in 
the paragraph on deformations.

322 cross surfaces, surfaces of revolution

It is possible to define an operator producing pSurfaces from a « section » curve defined in an Oxz 
plane, displaced along the Oy axis according to a « profile » curve. In the case where the section curve is 
the arc of a circle, a surface of revolution is produced with the particular cases of cylinders, toruses and 
spheres as seen above. Here is an implementation in POVRAY/pFlibs syntax :

/*
  CROSS SURFACE :
  input: two pLn planes in Oxy, profile and section
  output: a pSmn
  nota: particular cases: prisms and surfaces of revolution
        curved profile to study
  call: #local surf = cross( c1, c2 )
*/
#macro cross( c1, c2 )
    #local nb1 = taille( c1 );    // profile curve
    #local nb2 = taille( c2 );    // section curve
    #local surf = array[nb1]      // cross surface
    #local i = 0; #while (i< nb1) // for each profile point
        #local profil = c1[i];    // a point of the profile
        #local pp = array[nb2]
        #local j=0; #while (j< nb2)// for each section point
            #local section = c2[j];// a section point
        #local pp[j] = < 
              section.x*profil.x,    // base on x
              section.t*profil.y,  // along axis y
              section.y*profil.x,  // base on z
              section.t*profil.t  >  ;    
        #local j=j+1; #end
        #local surf[i] = pp
    #local i=i+1; #end
    surf
#end
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figure 322.1 to 322.2 : a surface of revolution and another deformed at the top.

Note that in the case of a nonrational section and profile (whose points all have a value of t equal to 
1), the expression of a current point becomes :

#local pp[j] = < section.x*profil.x,   // base on x
                           profil.y,   // along Oy
                 section.y*profil.x,   // base on z
                 1 >;                  // always

an expression where, for coordinates (x,z) of the resulting point we recognize the application of a 
change of scale in the relation of profile.x to the current point (x,y) of the section, and for the coordinate 
in y of the current point, application of the value profile.y of the current point of the section ; the section  
curve is clearly displaced along axis Oy following the profile curve.

Of course,  one of  the big  advantages of  pSurfaces  is  the fact  they  ARE pSurfaces,  i.e.,  that  it's 
possible to deform them through the intermediary of their pCurves and generating points. This opens the 
door to creating a whole range of freer shapes based on initially conical sections, like the various sections 
of the cabin of a plane (an Airbus, for instance), from the nose to the tail, perfect circles, from the pear-
shaped cockpit  and the widening of the straight line of the wings and the tail-plane - all without the 
slightest  discontinuity,  using  the same curve in  which  only  the control  points  vary  according  to  the 
context. The illustration above shows a more modest example, a pot turned on the wheel, whose top has 
been deformed by the potter's hand to make a lip for pouring.
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323 pipe surfaces

figure 323.1: a pipe surface is the envelope surface of a section curve aligned to the Serret-Frenet 
trihedron of the curved path it follows. 

Taking a curve called « path » and a curve called « section », it is fairly easy to create a pipe surface 
using the Serret-Frenet trihedron of the path curve as the transformation operator (translation + rotation) 
of the points on the section curve. The pipe produced can be symbolically written in the form -cf diagram 
323.1- :

pipe = path + TNB(path) * section

where TNB is a 3x3 matrix constructed on the tangent, normal and binormal vectors. 

But there is a problem here ! Up to now, the combinations studied produced pSurfaces ; a torus 
constructed  using  formulas  given  in  in  the  « surfaces  of  revolution »  section  is  a  set  of  9  points 
distributed in space such that operator MIR() produces a perfectly toric surface. But trying to construct 
the torus by distributing the 3 control points of the arc of a path circle according to the 3 local axes 
(Serret-Frenet trihedrons) at each of these points, will not produce the desired result. The 3 intermediate 
control points are not placed correctly, and the MIR() operator will not produce a torus.

The only solution is to apply the MIR() operator to the path curve before calculating the surface 
control points. The result is obtained, but the pipe() operator cannot be said to produce a pSurface, as 
understood up to now.

Here is an implementation in POVRAY/pFlibs syntax, in the form of a pipe() operator :
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/*
  PIPE SURFACE
  input: a path pLm and a section pLn
  recursion values at u and v (pre-subdivision)
  output: a pSmn (that can be subdivided)
  nota: works with rational curves 
  call:  #local surf = pipe( path, section, 4, 3 )
*/
#macro pipe(che, sec, r1, r2)
  #local chemin  = pFsubdivision( 1, che, < r1,0,0,0 > )
  #local section = pFsubdivision( 1, sec, < r2,0,0,0 > )
  #local vmax = taille(chemin);
  #local umax = taille(section);
  #local tube = array[vmax]
  #local pp = array[umax]
  #local i = 0; #while (i< vmax)
    #local mat = pFgetPijk( 1, che, i/(vmax-1) )
    #local j = 0; #while (j< umax)
      #local pp[j] = pFtransform( mat, section[j] );
    #local j=j+1; #end
    #local tube[i] = pp
  #local i=i+1; #end
  tube
#end

Note that unlike the operator cross() seen previously, this pipe() operator incorporates the recursion 
parameters  used  by  the pFsubdivision()  operators  ;  we saw how it  was necessary,  in  fact,  to  apply 
subdivision to the path curve before composition, and for reasons of call symmetry, we also subdivide the 
section curve before composition.

Comment : the non commutativity that has appeared between operator MIR() and operator pipe() 
with the effect of producing two different surfaces, leads to distinguishing two classes of composition 
operators : those that commute with MIR() and the others. Only the group of pascalian forms armed with 
commutative operators producing the elements of this group,  can be considered as a safe basis for a 
unitary  geometry  of  curved  forms.  The  others  need  to  be  manipulated  with  maximum  precaution, 
regardless of their practical use, pending a generalisation of pForms that naturally includes pipes.
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figures 323.1 to 323.4 : some examples of duplicated  pipes in rotation.
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figures 323.5 to 323.8 : a few aliens!

324 affine surfaces

Surfaces resulting from the product (profile x section) and pipe surfaces can be considered as specific 
cases of surfaces expressed in the following general case :

surface = AFFINE * curve

in which AFFINE is a 4x4 matrix that can be read like this :
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          |  Nx*Kx Bx    Tx    dx  |
AFFINE =  |  Ny    By*Ky Ty    dy  |
          |  Nz    Bz    Tz*Kz dz  |
          |  Sx    Sy    Sz    dt  |

with N: normal vector
B: binormal vector
T: tangent vector
d: translation vector
K: scalar vector
S: deformation vector

the first four vectors being linked to a path curve, vector k giving modulation and vector S tangential  
deformation (shear),  and any other interpretation of the 16 coefficients of the 4x4 matrix that can be 
envisaged  a priori.

Here  in  POVRAY/pFlibs  syntax,  is  an  implementation  of  an  extension  of  operator  pipe(), 
waving_pipe()  applying  a sinusoidal  wave to the produced pipe surface,  with a given amplitude and 
frequency :

/*
WAVING PIPE SURFACE 
#local surf = waving_pipe( path, section,< 4, 3 >,< 0.5, 5 > )
*/
#macro waving_pipe(che, sec, r, ondula )
  #local chemin  = pFsubdivision( 1, che, < r.x,0,0,0> )
  #local section = pFsubdivision( 1, sec, < r.y,0,0,0> )
  #local vmax = taille(chemin);
  #local umax = taille(section);
  #local tube = array[vmax]
  #local pp = array[umax]
  #local i = 0; #while (i< vmax)
    #local uu = i/(vmax-1);
    #local mat = pLgetFrenet( che, uu )
    #local coeff = 1 + ondula.x*sin(2*pi*uu*ondula.y );
    #local temp = mat
    #local temp[0][0] = mat[0][0]* coeff;
    #local temp[1][1] = mat[1][1]* coeff;
    #local temp[2][2] = mat[2][2]* coeff;
    #local j = 0; #while (j< umax)
      #local pp[j] = pFtransform( temp, section[j] );
    #local j=j+1; #end
    #local tube[i] = pp
  #local i=i+1; #end
  tube
#end

97 / 192



pascalian forms | 324 affine surfaces

figures 324.1 to 324.4 : portion of a torus of sinusoidally variable radius ; other variable pipes with 
lines drawn underneath.

Comment 1 : what was said in  section 323 on pipe surfaces equally applies to this section : operator 
waving_pipe() is not an operator producing a pSurface and must be used with  precaution.

Comment  2  :  this  in  no  way detracts  from the  general  character  of  operator  AFFINE,  a  linear 
operator that requires no use of metrics, and uses a normalisation and orthogonalisation operation. This 
will need a closer look...
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325 parallel forms

Pipe surfaces with a circular section are an example of a form obtained by looking for a set of points 
lying  at  a constant  distance from a given  curve ;  the  surface can be considered  to  be produced  by 
displacing the centre of a sphere of a constant radius along the path curve. A similar problem arises in 
looking for surfaces lying at a constant distance from a given surface, or from parallel surfaces. 

Implementation in POVRAY/pFlibs syntax is the following :

/*
  PARALLEL SURFACES
  create a surface lying at distance dd of a surface
  other possible cases with modulation of dd
*/
#macro parallel_surface( surf, dd )
  #local m = taille( surf );
  #local n = taille( surf[0] );
  #local S = surf
  #local i = 0; #while (i< n)
    #local j=0; #while (j< m)
      #local mat = pFgetPijk( 2,surf,< j/(n-1),i/(m-1),0,1 > )
      #local nn = < mat[0][0], mat[1][0], mat[2][0] >;
      #local pp = S[j][i];
      #local pt = pp.t;
      #local qq = < pp.x/pp.t, pp.y/pp.t, pp.z/pp.t >;
      #local qq = qq + nn*dd;
      #local S[j][i] = < qq.x*pt, qq.y*pt, qq.z*pt, pt >;
    #local j=j+1; #end
  #local i=i+1; #end
  S
#end

Comment : as was seen with the pipe, constructing parallel surfaces involves the local axis obtained 
by calling up operator pFgetPijk(). Hence a parallel surface is not strictly speaking a  pSurface.
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figure 325.1: two parallel pSurfaces containing a pVolume. 

figures 325.2 to 325.3: volumes constructed on parallel surfaces, to produce thick spoons in granite,  
wood, chrome and striped plexiglas !
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326 developed surfaces

Due to the properties of the derivatives of pCurves (which are pCurves of degree-1), the extremity of 
the tangent vector (non normalised) at a point travelling through a pLn displaces on a pLn. The surface 
generated by this tangent vector is thus a pS2n, a ruled surface that we know is developable, i.e., it can be 
rolled  out  flat  without  folds  or  tearing  (a  cone  is  a  developable  surface,  but  a  sphere  is  not). 
Implementation in POVRAY/pFlibs is left to the reader, as an exercise ;) -cf diagram 326-.

figure 326 : a pS32 (ruled cubicoid) constructed on two pL4 (cubics) (red and blue).

Comment  : the  study  of  pipe  surfaces  and  parallel  surfaces  has  shown  what  happens  when 
normalisation is introduced to operator pFgetPijk(), the result does not conform to the coherent whole of 
non  metric  pSurface geometry.  A study  of  developed  surfaces  illustrates  the  interest  of  using  a  non 
normalised tangent vector, and we can imagine that a pFgetPijk() operator that did not normalise the 
three tangent,  normal and binormal vectors would produce the desired results,  entering the family of 
pSurfaces. This needs to be looked at closer !
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33 special linear combinations

Summary of this section :

• 331 symmetrical forms 

• 332 coons surfaces

If any linear combination of points whose sum of coefficients is equal to 1 produces a « valid » point 
(invariant  with a change  of  axis),  the  same goes  for  the  linear  combinations  of  pForms in  general, 
produced in the final analysis by valid combinations of points :

pF = ∑
i
 ki.pFi with ∑

i
 ki = 1.

We already know the midpoint of two or N forms, the forms produced using operator MIR() and 
those obtained via the commutative composition operators, all linear combination pascalian forms. We 
are now going to look at other, non pascalian linear combinations, and examine to what extent they could 
enter this range.

331 symmetrical forms

Given two points P1 and P2, expression « P = 2*P1 - P2 » produces point P that is the symmetrical 
form of P2 in relation to P1. We could replace the points with any pForm, and for instance play with the 
combination « S = 2*S1 - S2 » to produce the symmetrical form of S2 in relation to form S1; in the 
specific  case  where  S1  is  a  plane,  we  obtain  plane  symmetry.  Here  is  an  implementation  in 
POVRAY/pFibs syntax in the case of surfaces :

/*
SYMMETRICAL SURFACES
create a surface that is symmetrical to another surface
*/
#macro symmetrical_surface( s1, s2 ) // surf = 2*s1 - s2
  #local M = taille( s1 );
  #local N = taille( s2[0] );
  #local surf = array[M]
  #local i=0; #while (i< M)
    #local pp = array[N]
    #local j=0; #while (j< N)
      #local pp[j] = 2*s1[i][j] - s2[i][j];
    #local j=j+1; #end
    #local surf[i] = pp
  #local i=i+1; #end
  surf
#end
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figures 331.1 and 331.2 : the gold leaf and the striped transparent leaf are symmetrical in relation to  
the granite leaf.

Any surface combination can be treated in the same way, and we will see a simple and powerful 
application of this in Coons surfaces.

332 coons surfaces

figures 332.1 to 332.3 : a Coons surface on 4 pL3 is a linear combination of 3 pSurfaces ; pS1+pS2-
pS3, is a pSurface.

One particularly useful type of combination is that discovered by Coons. The following combination 
of three surfaces :

103 / 192



pascalian forms | 332 coons surfaces

S = S0 + S1 - S2     ( note : 1+1-1 = 1, so it's OK )

is used in defining squares with the property of interpolating any 4 concurrent curves two by two, 
forming a continuous limit (homeomorphic to a complete circle).

Restricting ourselves to the case of pCurves, let's consider 4 of these (pLn1_1, pLn2_2, pLn3_3, 
pLn4_4) concurrent two by two to points P00, P01, P10, P11. Using insertion to equalise the number of 
control points of the 4 pCurves to a common value n ( n1 = n2 = n3 = n4 = n ), the combination can be  
rewritten in the form :

S =  MIR( pLn_1, pLn_3 )        // S0
  +  MIR( pLn_2, pLn_4 )        // S1
  -  MIR( P00, P01, P10, P11 )  // S2

S0 is a ruled surface constructed on pLn1_1, pLn3_3, S1 a ruled surface constructed on pLn2_2, 
pLn4_4, and S2 a curved facet constructed on the four meeting points. As the number of control points is 
identical for S0, S1 et S2, this expression can be applied to the midpoint :

Pm = MI( pLn_1, pLn_3 )
   + MI( pLn_2, pLn_4 )
   - MI( P00, P01, P10, P11 )

point of departure to launch a recursion and obtain a pSurface. The result is that a Coons surface 
constructed on pCurves is a pSurface (but we already knew that). 

Other, more complex, linear combinations could be dealt with, notably Gordon surfaces, interpolating 
a  series  of  curves  (think  for  instance of  generating  a  Joystick).  Implementation  in  POVRAY/pFlibs 
syntax is given in the appendix (the code is like that for symmetrical surfaces presented above), here's an 
example of a call producing a Coons square and its diagonal from 4 pCurves of different degrees (pL3, 
pL4, pL2, pL3) :

#local L1 = array[3] {< -1,0,-1,1 >,< 1/2,1,-1,1 >,< 1,0,-1,1 >}
#local L2 = array[4] {< -1,0,1,1 >,< -1/2,1,1,1 >,< 1/2,-1,1,1 >, 
<1,0, 1,1 >}
#local L3 = array[2] {< -1,0,-1,1 >,< -1,0,1,1 >}
#local L4 = array[3] {< 1,0,-1,1 >,< 1,-1,1/2,1 >,< 1,0, 1,1 >}
#local coons = create_coons( L1, L2, L3, L4 )
#local diag = pFdiagonalisation( 2, coons )

draw( 2, coons, 
 finesse(< 3,3 >)+surface(LISSE)+ma_couleur( < 1,1,0,0.5 > ) )
draw( 1, L1, finesse(4)+courbe(0.02)+ma_couleur( < 0,0,1 > ) )
draw( 1, L2, finesse(4)+courbe(0.02)+ma_couleur( < 0,0,1 > ) )
draw( 1, L3, finesse(4)+courbe(0.02)+ma_couleur( < 1,0,0 > ) )
draw( 1, L4, finesse(4)+courbe(0.02)+ma_couleur( < 1,0,0 > ) )
draw( 1, diag, point( 0.05 )+ma_couleur( < 1,1,1 > )
draw( 1, diag, finesse(4)+point(0.05)+ma_couleur(< 0,1,0 > ) )
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The following figures show the extent to which a simple linear combination (S = S1 + S2 – S3) can 
turn out to be full of possibilities, opening the road to other combinations between pForms, starting with 
pVolumes.

figures 332.4 to 332.7 : Coons pSurface and its diagonal, a shell comprised of two symmetrical  
surfaces each constructed on a small red circle and a big wavy circle, and a minimal pseudo-surface 

constructed on 8 Coons, AXO and seen from the front.
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figures 332.8  à 332.11 : four Coons pSurfaces constructed on a segment and pCurves waving at  
increasing frequency, curtains in the wind !
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34 concatenations, splines

Summary of this sectionn :

• 341 non interpolating splines  

• 342 interpolating splines 

• 343 NURBS

When more than three or four control points are required constructions can be a problem. So imagine 
concatenating several pCurves controlled by the same reduced number of points by defining connecting 
rules  to  ensure  the  different  continuity  conditions  for  the  tangents,  curvatures  and   torsion.  Several 
approaches are possible, depending on whether or not we want to interpolate the control points.

341 non interpolating splines

The best known approach is the « B_spline » approach that we will outline briefly. 

A « window » of the size of 2, 3, or 4 points is slid over N given points Qi, incrementing by one 
point in each case.

1) With a 2 point window (Qi,Qi+1) two points are defined as follows :

p0 = Qi
p1 = Qi+1

used as the control points of a pL2 (segment) per window, we easily obtain the following segments 
forming the base polygon, a B-spline of degree 1.

2) With a 3 point window (Qi,Qi+1,Qi+2) three points are defined (in i/2 for i=[0,2]) as follows :

p0 = 1/2(Qi + Qi+1 ) 
p1 = 1/2(   2.Qi+1 ) 
p2 = 1/2(     Qi+1 + Qi+2) 

used as the control points of a pL3 (parabola) per window. In constructing, the successive curves 
connect  up,  with  collinear  tangents  of  the  same  module.  The  flatness  of  the  parabolas  implies 
discontinuities of torsion which is null inside the parabolas but can be infinite at the nodal points. This 
construction  is thus  restricted  to  flat  drawing,  used  intensively  in  CAD software under  the name of 
quadratic splines.
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figures 341.1 to 341.4 : linear and quadric splines ; cubic splines, 6 and 16 points.

3) With a 4 point window (Qi,Qi+1,Qi+2,Qi+3) we define four points (in i/3 for i=[03]) as follows :

p0 = 1/6(Qi + 4.Qi+1 +   Qi+2       )
p1 = 1/6(     4.Qi+1 + 2.Qi+2       )
p2 = 1/6(     2.Qi+1 + 4.Qi+2       )
p3 = 1/6(       Qi+1 + 4.Qi+2 + Qi+3)

used as control points for a pL4 (cubic) by window. In constructing, the successive cubics connect 
up,  with  collinear  tangents  of  the  same module,  and  collinear  osculatory  planes  that  ensure  torsion 
continuity, distributing it in fact along each curve. The latter property makes it a good tool for piloting 
complex curved curves in space, the trajectory of a camera, a robot arm, etc... and CAD software has 
turned it into the all-purpose tool.

Comment 1 : in fact, the simplified B_splines construction presented here correspond to what are 
referred to as uniform splines ; in the quadric case, for instance, we chose to position the nodal points at 
the midpoint of the control points, but it would be both possible and interesting to look at dissymmetrical 
and different positionings, generating what is called non-uniform splines, beta-splines, etc., abundantly 
dealt with in the literature on the subject.

Comment 2 : it's important to note that these curves do not interpolate the given points, except for 
the linear case (where we simply obtain the control polygon) ; we can contrive to create phantom points 
at the start and at the end to « draw » the curve toward the first and last points, we could « duplicate » 
certain intermediary points to give them more weight and attach the curve to them, but continuity could 
extend to provoking the emergence of angular points (which would moreover be an interesting property) 
; we could also reconsider the problem and construct proper interpolating splines.
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342 interpolating splines

figures 342.1 to 342.4 : construction of interpolating pL3 and pL4 ; a yellow pCurve interpolating  5 
points, and a pSurface interpolating 25 points.

Construction of a concatenation of 1, 2 and 3 degree curves interpolating the given points presents no 
real problem in principle, but for our purposes the demonstration will be limited to presenting the quadric 
case.  Let  us  take N  bi points  with  i=[0,N-1]  to  interpolate  using  parabolas.  By taking  a point  b_1 
defining  b0 as a vector tangent to the start of the curve, we can begin constructing the first parabola, 
noting that its second control point is point b_1 symmetrical to b0 :

p0 = b0
p1 = 2*b1 - b_1
p2 = b2

and so forth for the other parabolas, b_1 being point p1 of the preceding parabola. 
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Look how simple this operation is, no inversion of the linear system is required to find the solution, 
as was the case in section 221. The reader can tackle the cubic case as an exercise :-). The following 
programme produces a perfect circle using the quadric method (a parabola easily generates the 90° arc of 
a circle). It's interesting to see how, by displacing point  b_1 parallel to axis OZ, the curve stays on the 
cylinder of axis OZ and radius 1/2.

#macro spline_quadric( b0, b )
        #local k = sqrt(2)/2;   // -> circle
        #local n = _size( b );
        #local spline = array[n-1]
        #local q = array[3]
        #local q[1] = b0;
        #local i=0; #while (i< n-1)
                #local q[0] = bb[i];
                #local q[1] = 2*bb[i]-q[1];
                #local q[2] = bb[i+1];
                #local spline[i] = q    
                #local spline[i][1] = spline[i][1]*k;
        #local i=i+1; #end      
        spline
#end
#local b_1 = < 1/2,-1/2,0,1 >;  // initial point
draw_point( b_1, point( 0.05, < 1,0,0,0.7 > ) )
#local bb = array[5] { < 1/2,0,0,1 >, < 0,1/2,0,1 >, < -1/2,0,0,1 >, < 
0,-1/2,0,1 >, < 1/2,0,0,1 > } 
draw_courbe( bb, 0, point( 0.04, < 1,0,0 > ) )
#local circ = spline_quadric( b_1, bb )
#local i=0; #while (i< _size(circ))
        draw_courbe(circ[i],3,point(0.02,< 1,1,0 > ))
#local i=i+1; #end

figures 342.5 to 342.8 : blue interpolating quadric splines and green interpolating pCurves.
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343 NURBS

So far we have only discussed concatenations based on an even distribution of points ; but it is also 
possible to envisage applying different (asymmetrical) behaviour at the straight line of nodal points, or 
multiplying points in the same place to construct non uniform splines, using the same reasoning. So we 
can construct interpolating or non interpolating splines that are or are not uniform. Remembering that the 
work is carried out in R4 space, we have thus produced NURBS, « Non Uniform Rational B-splines », 
keeping things simple, which is no mean feat ... This family of shapes considered a « must » in CAD, a 
kind  of  mathematical  monster  that  is  beyond  direct  understanding,  has  for  a  long  time  been  rather 
mistreated by CAD softwares.  Apart  from software like Rhino which is based on them, NURBS are 
normally only used in constructing circles and surfaces of revolution. All we need to remember here is 
simply that NURBS can be seen as concatenations of pForms interpolating or non interpolating, uniform 
or non uniform, whose control points are obtained from base points through simple « sliding » linear 
transformations. The question that often arises as to whether or not Bézier curves are specific cases of 
NURBS is no more important basically than knowing whether a segment is a specific case of a circle or 
whether the atom comes before the molecule. In the pascalian approach, they're members of the same 
family !

figures 343.1 and 343.2 : a NURBS circle, quadric spline interpolating 4 points ; a NURBS surface 
interpolating  3 splines controlled by 5 points, in a slightly increased definition interval, and its yellow 

diagonal; the marble texture shows up the level lines.
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35 deformation operators

In  theory,  any pForm can be manipulated  at  will  to  the smallest  detail  using  the sub-forms that 
generate it, the deepest of which are the control points themselves. In practice, this is not always easy to 
do  :  how do  you  apply  deformations  like stretching/compression,  bending,  contorting  or  waving  an 
object with any kind of coherence ? Imagine how hard it would be to position the control points, by 
hand, of the twenty-odd bicubics making up a teapot - to use the favourite example given by infographic 
programmers - into which boiling tea is poured until swelling point, a painful torsion resulting in plastic 
fusion  that  finally  completely  flattens  it  on  the  table...  So  an  operator  is  needed  that  is  capable  of 
applying such deformations globally. 

Two approaches at least can be envisaged : the first consists in applying a mathematical function (for 
example a sinusoid for waving) to all the points in the pForm, the drawback being that the resulting form 
is not a pForm, so we can no longer apply the aforementioned operators to it. The second consists in 
« embedding » the pForm in another pForm, the result of which is a pForm, as we know. Thus we can 
embed a pCurve in a pSurface (a pS32 for example) and displace the control points of the pSurface to 
deform the pCurve. 

figure 35.1 : a flat facet and its diagonal immersed in a deformed cube (pV332).

A complex pVolume can also be immersed in another, simpler pVolume that is easier to deform. This 
provides a method for creating anamorphosis. 

Figure  35.1  shows the deformation of  a flat  facet and its diagonal  immersed in  a cube (pV332) 
constructed on two biquadrics (pS33); we have 3x3x2 = 18 possible control points to deform this facet 
and its diagonal, and any other immersed pForm (curve, surface, volume).
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Figure 35.2 shows another example of deformation : a portion of a torus in granite (pS33) and its 
white diagonal (pL5) are immersed in a cube (pV223) controlled by 3 facets (pS22) and represented by a 
grid of 12 red points ; the median facet is sinusoidally displaced horizontally, and the  torus portion and 
its diagonal are carried along in the deformation of the cube.

Comment 1 : One important point to remember is the fact that before being curved, a pForm can be 
perfectly « straight »! A pS22 can totally represent a perfect classic square and a pV222 can represent a 
simple  orthonormed  cube.  The  particularity  of  pforms  is  that  no  metrics  are  presupposed  in  their 
definition, which is why there's no problem carrying them off into curved space.

Comment 2 : another point we shouldn't forget is that a complex form in our space can be considered 
as a slightly simpler form in more complex space ; the white diagonal of the torus portion carried off in  
the deformed cube in figure 35.2 is a simple segment immersed in the torus portion, the torus portion is a 
truly classic torus  with constant  radius  carried off  in the cube.  Question :  what,  in our  space, is the 
number of control points of the pCurve diagonal of the deformed torus ?
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figure 35.2 : a torus (pS33) and its diagonal (pL5) immersed in a cube (pV322) deformed by 
horizontal sinusoidal translation of its median control plane.
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36 geometry in pForms

We have already seen that, from the concept of a segment immersed in a pSurface, we could stretch 
the  concepts  of  parallelism,  orthogonality,  and  angle,  study  the  intersection  of  two  eSegments,  its 
divisions, prolongations, etc..., thus defining a geometry in pSurfaces. We are not limited to segments 
immersed in pSurfaces, and the reasoning is valid for all pForms, starting with pVolumes. The present 
essay constitutes  nothing  but  a first  approach  to  this,  beyond which,  all  the necessary precision and 
coherence is required to construct a non metric pGeometry of curved forms, and such is the task ahead of 
us... 

While the segments immersed in pSurfaces are not usually geodesics, it is sometimes necessary to 
calculate geodesics on pSurfaces, to deal with « metric » in pSurfaces. This was done in participation in 
the design of a roof for the circular swimming pool in St Quentin in Yvelines for the firm of engineers of 
Michael Flach, specialised in wooden structures. The structural principle is particularly elegant : planks 
aligned along geodesic lines are stacked alternatively to form arcs of great inertia perpendicular to the 
surface ; crossing them naturally forms knots, the whole becoming a mesh onto which the roof plates are 
laid. 

figures 36.1 and 36.2 : study, crossing geodesics on a portion of torus.

The problem with this technique  « is » to apply a thin plank to a curved surface - not always an easy 
task :  in  the case of  a hyperboloid  of  revolution,  the two families of rectilinear generatrixes  can be 
followed,  in  the case of a sphere  we would follow the arcs of  the big circle (which is the case for 
meridians but not for parallels), in the case of a torus and even more so, of a more complex form, there is 
only one solution : following the geodesic lines. So it is the differential system presented in section 0232 
that has to be used, in a classic iterative approach resulting in an array of points defined as [x,y,z]. For the 
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implementation carried out in POVRAY/pFlibs, you write : 

#local geo = geodesic( surf, P, A, N, dt )
where P=starting point, A=firing angle, N= nb points, dt= pitch

figures 36.3 and 36.4 : construction, toroidal roof composed of geodesic arcs in nailed planks 
allowing easy crossing at the nodes.
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37 other operations on pForms

figure 37: periodic minimal surface.

Other forms could be studied such as the products of pForm operators, boolean operators on pForms 
(intersection,  difference, union),  and why not,  quasi-minimal surfaces that satisfy Laplace's equation, 
whose expression of current point finite differences :

P[i,j] = ( P[i-1,j] + P[i+1,j] + P[i,j-1] + P[i,j+1] ) / 4

recalls the definition of a midpoint of a curved facet. A well-chosen pSurface could perhaps, with its 
ipSegments and other ipCurves, prove to be a good guide in the study of quasi-minimal surfaces. Figure 
37 was calculated using to a standard method (iterative resolution of Laplace's equation) ; to be compared 
with Figure 332.5 using the Coons method to produce a pSurface.

Comment 1 : operators MI() and MIR() are central to generating pascalian forms, and it is possible 
to imagine fruitful variants. The Cantor set (1883) is a fractal set with points defined as attracting the 
family of two homeotheses of factor 1/3 and centres 0 and 1. The 1/3 factor is not chosen randomly: if we 
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chose 1/2  we would obtain  a good pCurve (pL2)  which is not  at  all  fractal...  One idea would  be a 
THIRD() operator rendering two points to 1/3 and to 2/3, linked with a THIRD_R() operator to generate 
some very interesting fractal pForms. Another idea would be to find a definition generating generalised 
Peano pForms, for instance pForms with a topological dimension 1 and fractal dimension 2, diagonals of 
who knows what pMonster. And why not a RAND() operator rendering a random point between two 
points, very useful in fact, to generate an equal distribution (Gaussian) throughout the form ?

Comment 2 : treatises on geometry have a duty to study surfaces in their widest generality, able to be 
expressed easily, in continuous functions that are N times differentiable. They contain a point by point 
analysis of linear properties, what occurs in the tangent plane, and the second order properties, curvature, 
torsion, what occurs in osculatory quadrics (elliptical, parabolic, hyperbolic), and they usually stop there, 
as a kind of Taylor development series of surfaces limited to the second order. The concept of metrics has 
to be mentioned in passing,  and one can generalise in a very abstract way and speak of Riemannian 
varieties, but beyond that lies a great void with no signposts, for ordinary mortals at least ! By limiting 
the study of surfaces to the pSurface family, things get a lot easier : no more development in series a 
priori, (pSurfaces are polynomials of finite degree) and beyond the reference surfaces of the order of 2, 
like the ellipsoid, paraboloid, hyperboloid, we find some interesting beings that are easy to manipulate 
(outside any metrics) starting with the biquadric pS33 and its diagonal pL5. The pS33 is the first real 
double  curvature  surface  that  is  fairly  malleable  with  its  9  control  points  to  serve  as  a  model  for 
numerous surfaces like the sphere and the torus.  As for the pL3,  we have seen from this essay how 
important  it  is,  both  in  representing  the complete circle and because it  happens to  be the immersed 
segment of the pS33, i.e., the key component of its whole geometry.

But all these avenues were explored long ago by generations of talented mathematicians who staked 
them out in cogent theories, so there is nothing new here ; my only hope is that this different if not 
original rereading, based on elementary gestures will enable, as it did for me, non mathematicians to see 
things  more  clearly,  gain  a  better  grasp  of  curved  forms  and  open  the  door  to  other,  more  exotic 
geometries. 
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conclusion

Beneath these vague pipe forms lie simple statements, beneath the complex forms of the Sagrada 
Familia lies the art of forms, mastered and transmissible, creative art to be shared !

It is important to remember that without needing to go back to complex analytical formulation, the 
two fundamental operators MI() and MIR() have allowed us to generate a family of forms, the pForms ; 
we have studied the relationships between pForms immersed in other pForms (ipForms) and pForms in 
space, we have imagined them in four-dimensional space and projected conically in our own to produce 
rational forms, concatenated to produce splines and combined as affine sums and products to produce 
more complex forms, finding most of them in the well known forms of geometry. 

Pascalian forms and their accompanying operators thus constitute a tool to design and manipulate an 
important family of geometrical shapes. Let us finally note the following points :

1. Simplicity of approach
All the avenues revisited in this approach have long been explored by talented mathematicians 
who staked them out in cogent theories, and so there is nothing very new here ; but the hope is 
that this rereading based on a unitary approach and elementary gestures will be of as much help 
to someone having to draw curved forms freehand, as to the user of today's powerful computer 
tools, to see a little more clearly, to better master the hand and the machine, and even to explore 
and discover new forms. This is precisely one of the prime advantages of a simple approach, 
opening the door to new combinations and embeddings leading to geometries whose classic 
study is often a mathematical challenge, or at least requires a level that is beyond the reach of 
ordinary  mortals.  I'm  thinking  here  of  projective  geometry,  Riemann's  sphere,  Poincarré's 
circles,  attempts  to  represent  post  relativist  cosmological  theories.  Geometry  (according  to 
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Klein) is the study of invariant figures/properties in a given transformation, thus leading us to 
envisage  different  geometries  that  fit  into  one  another,  euclidian,  affine,  projective, 
geometries,... by successively removing the « constraints », metrics, angles, points to infinity, 
the removal of each constraint freeing geometry to move toward greater abstraction and richer 
content. In what  « corner » of this progression could we find a geometry based on pForms ?

2. Just one tool, a cord
Let  us  remember  that  the  initial  gesture  defined  in  operator  MI()  is  the  construction  of  a 
midpoint, and such a construction can be done « by hand » in - very straight- euclidian space 
with a simple cord that was first stretched between two posts, then folded back on itself to mark 
the midpoint.  Under certain conditions  seen in  this  essay,  this  gesture can still  be used for 
pSurfaces : you can in fact break them down more or less accurately into a « patchwork » of 
pSurfaces, drawing « by hand » with (in principle) a simple cord, immersed pCurves, pCurves 
assembled in a car body, pLines in the tailoring of a garment, pCurves to assemble stretched 
surfaces before or after optimisation, etc... 

3. Anamorphosis
This  approach can also be used in  the case of  anamorphosis  ;  the deformation  of  a square 
surface leaving the four sides rectilinear and coplanary will generate a facet pS22 ; an immersed 
segment will become a pL3 (parabola), a parabola will become a pL5, the arc of a circle will 
become  the  conical  projection  of  a  parabola  etc...  We  can  also  envisage  the  coherent 
deformation of a set of pForms by embedding them in a curved cube V222, V333, or again, in 
torsion, folding, stretching operations, etc... Whatever the case me be, we have at our disposal a 
vectorial anamorphosis tool to explore and to exploit.

4. Rules of composition
This approach provides a glimpse of a system of rules that can be applied to the « harmonious 
composition » of pForms, extending the well established rules of rectilinear geometrical forms ; 
the  « harmonious »  disposition  of  the  control  points  of  a  pForm  would  thus  ensure  the 
harmonious character of the form, and three points situated at the apexes of a golden rectangle 
(1,618) would be assumed to generate a « harmonious » parabola. This could provide a good 
analytical tool  for curved architecture :  it  would be interesting to look into the network of 
control points for the Sagrada Famillia, the Guggenheim Museum in Bilbao, Laetitia Casta's 
hips or Ford's KA ? 

5. 3D Spreadsheet
The spreadsheet concept is ideally simple : a table of cells to enter data and visualise the results 
and the possibility of establishing all kinds of relationships between the cells. By entering the 
number « 2 » in cell A1, number « 3 » in cell A2 and the formula « = A1 + A2 » in cell A3, we 
obtain « 5 » in this cell. Now imagine that by entering three « pL3 » respectively, in cells A1, 
A2 and A3, writing in cell A4 the formula « = MIR(A1, A2, A3) » and in cell A5 the formula 
« =DIAG(A4) », and calling up the graphic representation of these two cells, having carefully 
chosen the 9 control points of the three initial pL3 we could, for instance, see a portion of a 
sphere and its diagonal  as a portion  of Viviani's  window.  Pascalian forms armed with their 
internal operators could thus fill a kind of 3D spreadsheet, ... which still remains to be written. 
.
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6. Computer implementation
Lastly,  the  gestural  approach  developed  (cord,  posts,  midpoint,  ...)  turns  out  to  be  easily 
translated into terms that are immediately understood by the computer ; a computer has more 
trouble processing high degree algebraic expressions than applying the recursive application of 
dividing by two, and this is about  all it is asked to do in this approach.  Implementation in 
POVRAY language (that can be downloaded from the site : http://www.povray.org) has resulted 
in  a complete software tool  (POVRAY+pFlibs.inc)  allowing  the construction of  all  pForms 
(presented in this work and in others) with a means of « visually » controlling their validity. 
Further  information  about  this  implementation  can  be  found  on  the  following  page  : 
http://amartyfree.free.fr/alain.marty/index.php?page=pformes .

Leafing through two recent works on projective geometry and on NURBS, the former flying high in 
Bourbaki  type mathematical  concepts,  and the latter full  of heavy  indexed  expressions of increasing 
complexity, so virtually inaccessible as far as I am concerned, I was reminded of the long hours spent at 
university studying Laplace's equation in every possible system of coordinates, and how little I actually 
retained. Then I thought about this manipulation of Laplace's formula on a simple spreadsheet (cf 0233 
sliver of soap) presented to me during an Apple symposium  « Think different! », and the effect that 
discovery  had on  me :  I  had  just  understood  Laplace's  equation,  the obvious  simplicity  of  its  local 
behaviour  (a  simple  arithmetical  mean,  zero  acceleration)  and  the  fundamental  importance  of  the 
conditions at the limits that alone model the essentials of the resulting form. So I thought that if, in spite 
of its faults, the approach proposed in this essay on pascalian forms could have the same effect on the 
reader, I'd be a happy man.

Alain Marty, July 2004, Villeneuve de la Raho, marty.alain@free.fr

A deformed curved cube (pV332) represented in the interval u,v,w = [0,1] and its diagonal stretched in 
the interval [-infinite,+infinite] ; note that the effect of deforming a curved cube does not stop at the 

boundaries of its representation, it concerns the whole of space.
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Basic pForms can be drawn by hand on squared paper.
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implementation
All the images of pascalian forms used were produced in the POVRAY open source environment 

(http://www.povray.org). The fundamental macros as well as those at the basis of the images rendered 
that are incorporated in this work were grouped into two files, pFlibs.inc and pFbook.inc. 

A typical example is presented below with the full listing of the two files that follow on. 

This listing can be downloaded from this site :

 http://amartyfree.free.fr/alain.marty/index.php?page=pformes 

avoiding a lot of keyboard entering with the inevitable typing errors ; pending a manual/tutorial (that 
still  needs to  be written),  reading  the interface macro  statements  (draw(),  pFdiagonalisation(),  etc...) 
could provide some necessary indications on their use. 

typical  example 

Typical example of a program using the POVRAY/pFlibs libraries and producing the figure below :

Transparent yellow curved cube (pV222), its green diagonal surface (pS23) and the red diagonal of 
this surface (pL4)
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// 1) POVRAY alone does not recognize pForms, so
// it is necessary to include the file pFlibs.inc:
#include "pFlibs.inc" 

///////////////////////////////////////////////////////////////

// 2) CONSTANT SETTINGS:
// background colour of the image:
background { color rgb 3/4 } // grey 75%
// unit cube transparent centered on the origin:
// box { -1/2, 1/2 pigment { color rgbt 0.9 } scale 1.0001}
// three light sources:
light_source { <  2,2,-2 >   color rgb 1 }
light_source { < -2,2,-2 >   color rgb 1 }
light_source { <  2,0, 2 >   color rgb 1 }
// camera, either axonometric, or perspective:
// view_axonometric( AXO, 7/8 )
view_perspective( < 0.7,1.3,-1.1 >*6/6 )

///////////////////////////////////////////////////////////////

// 3) SCENE :

// a) construction of pForms :
#local pL2_0 = array[2] {<-0.5,-0.5,-0.5,1.0>,<0.5,0.0,-0.5,1.0>}
#local pL2_1 = array[2] {<-0.5, 0.0, 0.5,1.0>,<0.5,-0.5,0.5,1.0>}
#local pS22  = array[2] { pL2_0, pL2_1 }
#local pS22_0 = pS22
#local pS22_1 = pS22    
pFtranslate( 2, pS22_1, <0, 0.5,0> ) 
pFrotate( 2, pS22_1, <0,-15,0> )
#local pV222 = array[2] { pS22_0, pS22_1 }
#local pS23 = pFdiagonalisation( 3, pV222 )
#local pL4 = pFdiagonalisation( 2, pS23 )

// b) drawing of pForms :
draw( 3, pV222, finesse(<1,3,3,0>)

+ enveloppe(LISSE) + ma_couleur(<1,1,0,0.5>) )    
draw( 2, pS23, finesse(<4,4>)

+ surface(LISSE) + ma_couleur(<0,1,0,0>) ) 
draw( 1, pL4, finesse(5) 

+ courbe( 0.02 ) + ma_couleur(<1,0,0,0>) )

125 / 192



pascalian forms | pFlibs.inc file

pFlibs.inc file

The macros of the fundamental pFlibs.inc file are listed in the following pages.

// file « pFlibs.inc »
// under GPL open source licence
// http://marty.alain.free.fr
// version of 01/06/2004

/*----------- MACROS GENERALES DANS R4 ------------*/

/*
    TRANSFORMATION GENERALE AFFINE:
        pp.x      |  00 01 02 03 |    |  p.x
        pp.y   =  |  10 11 12 13 |  * |  p.y
        pp.z      |  20 21 22 23 |    |  p.z
        pp.t      |  30 31 32 33 |    |  p.t
*/
#macro pFtransform( mat, p )
< mat[0][0]*p.x + mat[0][1]*p.y + mat[0][2]*p.z + mat[0][3]*p.t,
  mat[1][0]*p.x + mat[1][1]*p.y + mat[1][2]*p.z + mat[1][3]*p.t,
  mat[2][0]*p.x + mat[2][1]*p.y + mat[2][2]*p.z + mat[2][3]*p.t,
  mat[3][0]*p.x + mat[3][1]*p.y + mat[3][2]*p.z + mat[3][3]*p.t >  
#end

#macro pFtranslate( dim, f, dt ) // translation d'une pForme
    #if (dim=0)
        #local tt = f.t; // translation dans R3 < dt.x,dt.y,dt.z >  
        #local pp = < f.x/tt, f.y/tt, f.z/tt > + dt;
        #local f = < pp.x*tt, pp.y*tt, pp.z*tt, tt >;
    #else
        #local n = taille( f );
        #local i=0; #while (i< n)
            pFtranslate( dim-1, f[i], dt )
        #local i=i+1; #end
    #end
#end

#macro pFrotate( dim, f, dr )    // rotation d'une pForme
    #if (dim=0)
        #local tt = f.t; //  rotation dans R3 < dr.x,dt.y,dt.z >  
        #local pp = < f.x/tt, f.y/tt, f.z/tt >  ;
        #local rad = pi/180;
        #if (dr.x != 0)
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            #local pp = < 
            pp.x, 
            cos(rad*dr.x)*pp.y - sin(rad*dr.x)*pp.z,
            sin(rad*dr.x)*pp.y + cos(rad*dr.x)*pp.z >;
        #end
        #if (dr.y != 0)
            #local pp = <    
            cos(rad*dr.y)*pp.x -sin(rad*dr.y)*pp.z,
            pp.y,
            sin(rad*dr.y)*pp.x + cos(rad*dr.y)*pp.z >;
        #end
        #if (dr.z != 0)
            #local pp = <    
            cos(rad*dr.z)*pp.x - sin(rad*dr.z)*pp.y,
            sin(rad*dr.z)*pp.x + cos(rad*dr.z)*pp.y,
            pp.z >  ;
        #end
        #local f = < pp.x*tt, pp.y*tt, pp.z*tt, tt >;
    #else
        #local n = taille( f );
        #local i=0; #while (i< n)
            pFrotate( dim-1, f[i], dr )
        #local i=i+1; #end
    #end
#end

#macro pFscale( dim, f, ds )    // homothetie d'une pForme
    #if (dim=0)
        #local tt = f.t; //  homothetie dans R3 < ds.x,ds.y,ds.z >  
        #local pp = < f.x/tt*ds.x, f.y/tt*ds.y, f.z/tt*ds.z > ;
        #local f = < pp.x*tt, pp.y*tt, pp.z*tt, tt >  ;
    #else
        #local n = taille( f );
        #local i=0; #while (i< n)
            pFscale( dim-1, f[i], ds )
        #local i=i+1; #end
    #end
#end

/*
    MACROS INTERNES
*/

#macro _interpol( dim, f0, f1, uu )    // interpole deux formes
    #if (dim=0)
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        (1-uu)*f0 + uu*f1;
    #else
        #local nb = taille( f0 );
        #local fm = array[nb]
        #local i=0; #while (i< nb)
        #local fm[i] = _interpol( dim-1, f0[i], f1[i], uu )
        #local i=i+1; #end
        fm
    #end
#end

#macro _shift( dim, n, sens, uu )    
    // calcule la sous_forme droite ou gauche
    #if (n >  0)
        #local i=0; #while (i< n)
            #if (sens)            // droite
    #declare _d[i] = _interpol( dim-1, _d[i], _d[i+1], uu )
            #else                // gauche
             #local nb = taille( _g );
             #local k = nb-1-i;
    #declare _g[k] = _interpol( dim-1, _g[k], _g[k-1], uu )
            #end
        #local i=i+1; #end
        _shift( dim, n-1, sens, uu )
    #end
#end

#macro _stretch( dim, f, p0, p1 )  // cale f entre p0.x et p1.x
    #local _g = f
    _shift( dim, taille(f)-1, false, 1-p1.x ) // travail sur g
    #local _d = _g
    _shift( dim, taille(f)-1, true, p0.x/p1.x )// travail sur d
    _d                               // mêmes dims que f
#end

#macro _sous_subdi( dim, p, r ) // charge out et incrémente index
    #if (dim=0)
        #declare out[index] = p;
    #else
        #local pp = pFsubdivision( dim,p,< r.y, r.z, r.t, 0 > )
        #declare out[index] = pp
    #end
    #declare index=index+1;
#end
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#macro _subdi( dim, f, r, uu ) // corps récursif de subdivision()
    #if (r.x=0)
        #local i=0; #while (i< nb_in-1)
            _sous_subdi( dim-1, f[i], r )
        #local i=i+1; #end
    #else
        #local _g = f
        #local _d = f    
        _shift(dim, nb_in-1,true,uu)
        _shift(dim, nb_in-1,false,uu)
        _subdi( dim, _g, < r.x-1, r.y, r.z, r.t >  , uu )
        _subdi( dim, _d, < r.x-1, r.y, r.z, r.t >  , uu )
    #end
#end

/*
    3 MACROS FONDAMENTALES
*/

#macro pFsubdivision( dim, in, r )    
    // retourne la forme subdivisee
    #local nb_in = taille(in);        // récursivement au 1/2
    #local nb_out = (nb_in-1)*pow(2, r.x)+1;    //
    #local out = array[nb_out]
    #local index = 0;
    _subdi(dim, in, r, 1/2) //_subdi(dim,in,r,1/3) sierpinsky
    _sous_subdi(dim-1, in[nb_in-1], r)
    out
#end

#macro pFstretch( dim, f, p0, p1 )        
    #if (dim=1)
        _stretch( 1, f, p0, p1 )
    #else
        #local ff = _stretch( dim, f, p0, p1 )    
        // ff prend f recalé entre p0.x et p1.x
        #local n = taille(ff);    // nb de sous_formes
        #local i=0; #while (i< n) // pour chaque sous_forme:
            #local ff[i] = pFstretch( dim-1, ff[i], 

< p0.y,p0.z,0,1 >  , < p1.y,p1.z,0,1 >   )
        #local i=i+1; #end
        ff    // retourne ff recalée 
    #end
#end
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#macro pFgetSubForm( dim, f, uu )  // retourne la sous_forme
    #local _d = f    // generatrice en uu (uu est un REEL !!)
    _shift(dim, taille(f)-1, true, uu)
    _d[0]    // tableau unidim
#end

/*
    IMMERSION
1) get_point() retourne les coordonnées globales d'un point défini en 
coordonnées locales (p) dans la pForme f
2) immersion() transforme une ipForme définie en coordonnées locales 
dans une pForme, en un tableau de points définis en coordonnées 
globales. Ce tableau ne définit pas une pForme (une post-subdivision 
n'est pas possible)
3) voir plus loin les macros interpolation plus générales retournant 
les points de contrôle dans le cas de pCourbes dans une pSurface
*/

#macro pFgetPoint( dim, f, p )
    #local qt = p.t;
    #local q = < p.x/qt, p.y/qt, p.z/qt,1 >  ;
    #switch (dim)
        #case (1)
            #local pp = pFgetSubForm( 1, f, q.x );
        #break
        #case (2)
            #local ff = pFgetSubForm( 2, f, q.y )
            #local pp = pFgetSubForm( 1, ff, q.x );
        #break
        #case (3)
            #local gg = pFgetSubForm( 3, f, q.z )
            #local ff = pFgetSubForm( 2, gg, q.y )
            #local pp = pFgetSubForm( 1, ff, q.x );
        #break
        #case (4)
            #local hh = pFgetSubForm( 4, f, q.t )
            #local gg = pFgetSubForm( 3, hh, q.z )
            #local ff = pFgetSubForm( 2, gg, q.y )
            #local pp = pFgetSubForm( 1, ff, q.x );
        #break
        #else    
            #render "...nothing out there !!! "
    #end
    < pp.x*qt, pp.y*qt, pp.z*qt, pp.t*qt >  ;
#end
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#macro pFimmersion( dim, f, idim, imf )        
    // ATTENTION: imf est modifiée
    #if (idim=0)        // et n'est plus une pForme
        #local imf = pFgetPoint( dim, f, imf )
        // NO post-subdivision
    #else
        #local n = taille( imf );
        #local i=0; #while (i< n)
            pFimmersion( dim, f, idim-1, imf[i] )
        #local i=i+1; #end
    #end
#end

/*
    DIAGONALISATION D'UNE FORME
*/

#macro _diag_N2( M, s0, s1 )    
    // diagonale d'une surface de type [N,2]
    #local pp = array[M+1]
    #local pp[0] = s0[0];
    #local pp[M] = s1[M-1];
    #local i=1;    #while (i< M)
        #local uu = i/M;
        #local pp[i] = (1-uu)*s0[i] + uu*s1[i-1];
    #local i=i+1;  #end
    pp
#end

#macro _diag_surf( surf )        
    // diagonale d'une surface de type [M,N]
    #local M = taille( surf[0] );
    #local N = taille( surf );
    #if (N >  2)
        #local ss = array[N-1]
        #local j=0;        #while (j< N-1)
        #local ss[j] = _diag_N2( M, surf[j], surf[j+1] )
        #local j=j+1;    #end
        _diag_surf( ss )
    #else
        _diag_N2( M, surf[0], surf[1] )
    #end
#end
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#macro pFdiagonalisation( dim, f )    
    // diagonale d'une pForme quelconque
    #if (dim=2)
        _diag_surf( f )
    #else
        #local M = taille( f );    // nb de sous-formes
        #local ddd = array[M]
        #local i=0;    #while (i< M)
            #local ddd[i] = pFdiagonalisation(dim-1,f[i])
        #local i=i+1;    #end
        ddd
    #end
#end

/*
    ELEVATION DU DEGRE D'UNE FORME
*/

#macro pLup( f, dd ) // en attendant une version up_forme qq...
    #local ff = f
    #local i=0; #while (i< dd)
        #local N = taille(ff);
        #local fff = array[N+1]
        #local fff[0] = ff[0];
        #local fff[N] = ff[N-1];
        #local j=1; #while (j< N)
            #local fff[j] = j/N*ff[j-1] + (1-j/N)*ff[j];
        #local j=j+1;    #end
        #local ff = fff
    #local i=i+1;    #end
    ff
#end

#macro pSup( f, dd ) // en attendant une version up_forme qq...
    #local M = taille( f ); // nb de courbes
    #local i=0; #while (i< M)    // pour chaque courbe:
        #local f[i] = pLup( f[i], dd.u )    // élever degré
    #local i=i+1; #end
    #local N = taille( f[0] ); // nb de points d'une courbe
    #local ff = array[N]   // création d'une surface ortho
    #local i=0; #while (i< N)    // pour chaque point:
        #local M = taille( f ); // nb de courbes
        #local fff = array[M]    // création d'une courbe ortho 
        #local j=0; #while (j< M)
            #local fff[j] = f[j][i];
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        #local j=j+1; #end
        #local ff[i] = pLup( fff, dd.v )    // élever degré
    #local i=i+1; #end
    ff
#end

/*
    AFFICHAGE D'UNE FORME DANS LE CAS GENERAL
        cas des points, courbes, surfaces et volumes 
        traité plus loin sous différentes formes
*/

#macro pFdraw( dim, f, rayon )                
    // dessine les points de la pForme dans R3
    #if (dim=0)
        sphere { < f.x/f.t, f.y/f.t, f.z/f.t  >  , rayon } 
    #else
        #local n = taille( f );
        #local i=0; #while (i< n)
            pFdraw( dim-1, f[i], rayon )
        #local i=i+1; #end
    #end
#end

/*------------- COURBES INTERPOLANTES ET 
            COURBES IMMERGEES DANS UNE SURFACE ------------*/

//    MATRICE DE POINTS UNIFORMEMENT DISTRIBUES SUR UNE pCOURBE

#macro fact( n )
    #if (n=0)
        1;
    #else
        n*fact(n-1)
    #end    
#end

#macro calcul_mat( n ) // matrice de n points 
//#local n = n-1; // uniformement distribues 
#local mat = array[n+1][n+1] // sur une pLn
#local fn = fact( n )
#local CC = array[n+1]
#local j=0; #while (j<n+1) // precalul coeffs binomiaux

#local fnj = fact( n-j )
#local fj  = fact( j )
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#local CC[j] = fn/(fnj*fj);
#local j=j+1; #end
#local EPS = 0.0000001; // problem with zero in MegaPov 
#local i=0; #while (i<=n) // pour chaque ligne

#local j=0; #while (j<=n) // pour chaque colonne
#local temp = CC[j];
#local temp = temp*pow(EPS+1-i/n,n-j);
#local temp = temp*pow(EPS+i/n,j);
#local mat[i][j] = temp;

#local j=j+1; #end
#local i=i+1; #end
mat

#end

#macro ctrliCurvInSurf( surf, curv )    
    // nb de points de controle
    #local nb1 = taille( surf );     // de la courbe de R4
    #local nb2 = taille( surf[0] ); // correspondant à la courbe
    #local nb = taille( curv ); // immergée dans une surface
    ((nb1+nb2-2)*(nb-1)+1)
#end

/*
    pCOURBE et pSURFACE INTERPOLANTES
    en attente d'une formule générale pour les pFormes
*/

#macro pLinterpolante( curv )
    #local n = taille( curv );
    #local vx = array[n]
    #local vy = array[n]
    #local vz = array[n]
    #local vt = array[n]
    #local i=0; #while (i< n)
        #local vx[i] = curv[i].x;
        #local vy[i] = curv[i].y;
        #local vz[i] = curv[i].z;
        #local vt[i] = curv[i].t;
    #local i=i+1; #end
    #local mat = calcul_mat( n-1 )
    #local tam = inverse_mat( mat )
    #local _vx = produit_mat( tam, vx )    
    #local _vy = produit_mat( tam, vy )    
    #local _vz = produit_mat( tam, vz )    
    #local _vt = produit_mat( tam, vt )
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    #local icurv = array[n]
    #local i=0; #while (i< n)
        #local icurv[i] = < _vx[i], _vy[i], _vz[i], _vt[i] >;
    #local i=i+1; #end
    icurv
#end

#macro pSinterpolante( surf )
    #local m = taille(surf);
    #local n = taille(surf[0]);
    #local ipLm = array[m]
    #local i=0; #while (i< m)
        #local ipLm[i] = pLinterpolante( surf[i] )
    #local i=i+1; #end
    #local temp = array[m] 
    #local isurf = array[n]
    #local i = 0; #while (i< n)        
        #local j=0; #while (j< m)
            #local temp[j] = ipLm[j][i];
        #local j=j+1; #end
        #local isurf[i] = pLinterpolante( temp )
    #local i=i+1; #end
    isurf
#end

//    pCOURBE IMMERGEE DANS UNE pSURFACE

#macro courbe_in_surface( courbe_immergee, surf )
    #local nb = ctrliCurvInSurf( surf, courbe_immergee );
    #local b = array[nb]
    #local i=0; #while (i< nb)
    #local pp = pFgetSubForm( 1,courbe_immergee,i/(nb-1) );
        #local b[i] = pFgetPoint( 2, surf, pp )
    #local i=i+1; #end
    #local ss = pLinterpolante( b )
    ss
#end

/* ----------- SPLINES INTERPOLANTES ----------------*/
// retourne des TABLEAUX de quadriques ou de cubiques
//    SPLINE INTERPOLANTE QUADRIQUE:    

#macro spline_interpolante_quadrique( b_1, b, cercle )
    #local n = taille( b );
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    #local spline = array[n-1]
    #local q = array[3]
    #local q[1] = b_1;
    #local i=0; #while (i< n-1)
        #local q[0] = b[i];
        #local q[1] = 2*b[i] - b_1;
        #local q[2] = b[i+1];
        #local spline[i] = q
        #local b_1 = q[1];    
        #if (cercle) 
            #local spline[i][1] = spline[i][1]*sqrt(2)/2; 
        #end
    #local i=i+1; #end    
    spline
#end

//    SPLINE INTERPOLANTE CUBIQUE:    
#macro spline_interpolante_cubique( b_2, b_1, b )
    #local n = taille( b );
    #local spline = array[n-1]
    #local q = array[4]
    #local i=0; #while (i< n-1)
        #local q[0] = b[i];
        #local q[1] = 2*b[i] -b_1;
        #local q[2] =  4*b[i] -4*b_1 +b_2;
        #local q[3] = b[i+1];
        #local spline[i] = q    
        #local b_2 = q[1];
        #local b_1 = q[2];
    #local i=i+1; #end    
    spline
#end

/*
CREATION DE COURBES ET SURFACES PRIMITIVES (dans R4)

*/

/*
     MAILLAGES BIDIM et TRIDM GAUCHES:
input:     le nombre de points de controle sur u,v,w et la ttt
output:    une pSmn ou un pVmnp orthogonaux 

a points de controle equirepartis
*/

136 / 192



pascalian forms | pFlibs.inc file

#macro creer_ligne( n1, ttt )
    #local f = array[n1]
    #local i=0; #while (i< n1)
        #local p = < -0.5+ i/(n1-1), 0.0, 0.0, 1 > ;
        #local f[i] = p * < ttt,ttt,ttt,1 > ;
    #local i=i+1; #end
    f
#end

#macro creer_facette( n1, n2, ttt )
    #local f = array[n1]
    #local ff = array[n2]
    #local i=0; #while (i< n1)
        #local j=0; #while (j< n2)
        #local p = < -0.5+ i/(n1-1), -0.5 + j/(n2-1), 0.0, 1 >;
        #local ff[j] = p * < ttt,ttt,ttt,1 > ;
        #local j=j+1; #end 
        #local f[i] = ff
    #local i=i+1; #end
    f
#end

#macro creer_cube( n1, n2, n3, ttt )
    #local f = array[n1]
    #local ff = array[n2]
    #local fff = array[n3]
    #local i=0; #while (i< n1)
        #local j=0; #while (j< n2)
            #local k=0; #while (k< n3)
    #local p = < -0.5+i/(n1-1), 

-0.5+j/(n2-1), 
-0.5+k/(n3-1), 1 >  ;

            #local fff[k] = p * < ttt,ttt,ttt,1 >  ;
            #local k=k+1; #end 
            #local ff[j] = fff
        #local j=j+1; #end 
        #local f[i] = ff
    #local i=i+1; #end
    f
#end

#macro pFmaillage( n, nn, ttt )
    #switch (n)
        #case (1)creer_ligne( nn, ttt )    #break;
        #case (2)creer_facette( nn.x, nn.y, ttt )    #break;
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        #case (3)creer_cube(nn.x, nn.y, nn.z, ttt)   #break;
        #case (4)    #render "... not yet !"
    #end
#end

#macro surface_aleatoire( surf, see, delta )
    #local ran = seed( see );
    #local m = taille(surf);
    #local n = taille(surf[0]);
    #local i = 0; #while (i< n)        
        #local j=0; #while (j< m)
            #local rrr = delta*rand( ran );
            pFtranslate( 0, surf[j][i], < 0,0,rrr >   )
        #local j=j+1; #end
    #local i=i+1; #end
    surf
#end

/*
     COURBES ARC DE CERCLE:
input:  le rayon du cercle
output: une pL3 quart de cercle
        une pL4 demi-cercle

une pL5 demi_cercle, extensible au cercle complet        
*/

#macro quart_cercle_3( r, coeff )    
    // coeff: attirance du point médian
    #local k = sqrt(2)/2;    // -> ellipse, cercle, hyperbole
    #local p0 = < r, 0, 0, 1 >  ;
    #local p1 = < r, r, 0, 1 >  *k*coeff;
    #local p2 = < 0, r, 0, 1 >  ;
    array[3]     { p0, p1, p2 }
#end

#macro demi_cercle_4( r )
    #local p0 = <  r, 0,  0, 1 >  ;
    #local p1 = <  r, 2*r,0, 1 >  /3;
    #local p2 = < -r, 2*r,0, 1 >  /3;
    #local p3 = < -r, 0,  0, 1 >  ;
    array[4]     { p0, p1, p2, p3 }
#end

#macro demi_cercle_5( r )
    #local k = sqrt(2)/2;
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    #local p0 = <  r, 0,      0, 1 >  ;
    #local p1 = <  r, r,      0, 1 >  *k;
    #local p2 = <  0, 3/2*r,0, 1 >  *2/3;
    #local p3 = < -r, r,      0, 1 >  *k;
    #local p4 = < -r, 0,      0, 1 >  ;
    array[5]     { p0, p1, p2, p3, p4 }
#end

#macro arc_cercle( n, r )
    #switch(n)
        #case (3)    quart_cercle_3( r, 1 ) #break
        #case (4)    demi_cercle_4( r ) #break
        #case (5)    demi_cercle_5( r ) #break
    #end
#end

#macro creer_cylindre( R, H )
    #local k = sqrt(2)/2;
    #local temp = array[2] 
    #local temp[0] = array[3] 
        {   < R, 0, 0, 1 >,
            < R, R, 0, 1 >*k,
            < 0, R, 0, 1 >
        },
    #local temp[1] = array[3] 
        {   < R, 0, H, 1 >,
            < R, R, H, 1 >*k,
            < 0, R, H, 1 >
        } 
    temp
#end

#macro creer_tore( R1, R2 )
    #local k = sqrt(2)/2;
    #local R12 = R1+R2;
    #local R2 = abs(R2);
    #local temp = array[3]     
    #local temp[0] =   array[3] 
        {   < 0,   0, -R12, 1 >,
            < 0,  R2, -R12, 1 >*k,
            < 0,  R2,  -R1, 1 >
        }
    #local temp[1] =   array[3] 
        {   < R12,  0, -R12, 1 >*k,
            < R12, R2, -R12, 1 >*k*k,
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            <  R1, R2, -R1,  1 >*k
        }
    #local temp[2] =   array[3] 
        {   < R12,  0,  0, 1 >,
            < R12, R2,  0, 1 >*k,
            <  R1, R2,  0, 1 >
        }
    temp
#end
 
/*
     SURFACE PRODUIT:
input:     deux pLn planes dans Oxy, profil et section
output:    une pSmn
nota:    cas particuliers: prismes et surfaces de révolution
        profil gauche à etudier
*/

#macro cross( c1, c2 )
    #local nb1 = taille( c1 );    // courbes profil
    #local nb2 = taille( c2 );    // courbe section
    #local surf = array[nb1]      // surface produite
    #local i = 0; #while (i< nb1) // pour chaque point du profil
        #local profil = c1[i];    // un point du profil
        #local pp = array[nb2]
        #local j=0; #while (j< nb2)// pour chaque pt  section
            #local section = c2[j];// un pt de la section
        #local pp[j] = < 
            section.x*profil.x,    // base sur x
              section.t*profil.y,  // le long de l'axe y
              section.y*profil.x,  // base sur z
              section.t*profil.t  >  ;    
        #local j=j+1; #end
        #local surf[i] = pp
    #local i=i+1; #end
    surf
#end

/*
     SURFACE TUBULAIRE
input: une pLm chemin et une pLn section
    les valeurs de recusrion sur u et v (pre-subdivision)
output:    une pSmn (qui pourra etre subdivisee)
nota:      vérifier le fonctionnement avec les courbes rationnelles
*/
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#macro pipe(che, sec, r1, r2)
    #local chemin  = pFsubdivision( 1, che, < r1,0,0,0 >   )
    #local section = pFsubdivision( 1, sec, < r2,0,0,0 >   )
    #local vmax = taille(chemin);
    #local umax = taille(section);
    #local tube = array[vmax]
    #local pp = array[umax]
        #local i = 0; #while (i< vmax)
            #local mat = pLgetFrenet( che, i/(vmax-1) )
            #local j = 0; #while (j< umax)
            #local pp[j] = pFtransform( mat, section[j] );
            #local j=j+1; #end
            #local tube[i] = pp
        #local i=i+1; #end
    tube
#end

/*
     SURFACE TUBULAIRE ONDULEE
    #local surf = waving_pipe( chemin,section,<4,3>,<0.5,5> )
*/

#macro waving_pipe(che, sec, r, ondulation )
    #local chemin  = pFsubdivision( 1, che, < r.x,0,0,0 >   )
    #local section = pFsubdivision( 1, sec, < r.y,0,0,0 >   )
    #local vmax = taille(chemin);
    #local umax = taille(section);
    #local tube = array[vmax]
    #local pp = array[umax]
        #local i = 0; #while (i< vmax)
            #local uu = i/(vmax-1);
            #local mat = pLgetFrenet( che, uu )

#local coeff = 1 
+ ondulation.x *sin( 2*pi*uu * ondulation.y );

            #local temp = mat
            #local temp[0][0] = mat[0][0]* coeff;
            #local temp[1][1] = mat[1][1]* coeff;
            #local temp[2][2] = mat[2][2]* coeff;
            #local j = 0; #while (j< umax)
        #local pp[j] = pFtransform( temp, section[j] );
            #local j=j+1; #end
            #local tube[i] = pp
        #local i=i+1; #end
    tube
#end
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/*
    SURFACES PARALLELES
    crée une surface située à la distance dd d'une surface
    autres cas possibles avec modulation de dd
*/

#macro surface_parallele( surf, dd )
    #local m = taille( surf );
    #local n = taille( surf[0] );
    #local S = surf
    #local i = 0; #while (i< n)        
        #local j=0; #while (j< m)
        #local mat = pSgetPijk( surf, < j/(n-1),i/(m-1),0,1 >   )
        #local nn = < mat[0][0], mat[1][0], mat[2][0]  >  ;
            #local pp = S[j][i];
            #local pt = pp.t;
            #local qq = < pp.x/pp.t, pp.y/pp.t, pp.z/pp.t >  ;
            #local qq = qq + nn*dd;
        #local S[j][i] = < qq.x*pt,qq.y*pt,qq.z*pt, pt >  ;
        #local j=j+1; #end
    #local i=i+1; #end
    S
#end

/*
    SURFACES COMBINAISONS LINEAIRES
    exemples de surfaces résultant d'une combinaison linéaire d'autres 
surfaces ; la somme des coefficients doit être égale à 1.
    le cas le plus connu est celui des surfaces de Coons
*/

/*
    SURFACES SYMETRIQUES
    crée une surface symétrique par rapport à une autre surface
    cas particulier: symétrie plan
*/

#macro surface_symetrique( s1, s2 )    // surf = 2*s1 - s2
    #local M = taille( s1 );
    #local N = taille( s2[0] );
    #local surf = array[M]
    #local i=0; #while (i< M)
        #local pp = array[N]
        #local j=0; #while (j< N)
            #local pp[j] = 2*s1[i][j] - s2[i][j];
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        #local j=j+1; #end
        #local surf[i] = pp
    #local i=i+1; #end
    surf
#end

/*
     SURFACE DE COONS:
input:     4 pLi deux a deux concourantes en quatre points
output:    une pSmn interpolant ces courbes
nota:     les 4 courbes peuvent être de degrés différents
*/

#macro creer_coons( L1, L2, L3, L4 )
    // ajuster les degrés de L1 et L2, et de L3 et L4
    #local M = taille(L1);
    #local m = taille(L2);
    #if (M >  m)    #local L2 = pLup( L2, M-m )    #end
    #if (M< m)      #local L1 = pLup( L1, m-M )    #end
    #local N = taille(L3);
    #local n = taille(L4);
    #if (N >  n)    #local L4 = pLup( L4, N-n )    #end
    #if (N< n)      #local L3 = pLup( L3, n-N )    #end
    #local M = taille(L1);
    #local N = taille(L3);
    // construire s1 (pSM2) sur L1/L2 et élever à pSMN: 
    #local s1 = array[2] { L1, L2 }    
    #local s1 = pSup( s1, < 0,N-2 >   )
    // construire s2 (pS2N) sur L3/L4 et élever à pSMN: 
    #local s2 = array[N]
    #local i=0; #while (i< N)
        #local s2[i] = array[2] { L3[i], L4[i] }
    #local i=i+1; #end
    #local s2 = pSup( s2, < M-2,0 >   )
    // construire s3 (pS22) sur les 4 points d'angle 
    // et élever à pSMN: 
    #local L21 = array[2] { L1[0], L1[M-1] }
    #local L22 = array[2] { L2[0], L2[M-1] }
    #local s3 = array[2] { L21, L22 }
    #local s3 = pSup( s3, < M-2,N-2 >   )
    // construire coons = s1 + s2 - s3: 
    #local coons = array[M]
    #local i=0; #while (i< M)
        #local pp = array[N]
        #local j=0; #while (j< N)
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            #local pp[j] = s1[i][j] + s2[i][j] - s3[i][j];
        #local j=j+1; #end
        #local coons[i] = pp
    #local i=i+1; #end
    coons
#end

// GEODESIQUES
// macro calculant les points d'une geodesique
// input: surface, point depart, angle de tir, nombre de points
// output: tableau des points, not a pCourbe !!!

#macro geodesique( surf, P, A, N, dt )
#local EPS = 1.0e-4;
// premier point en coords locales :
#local U    = P.x;
#local V    = P.y;
#local du = EPS;
#local dv = EPS;

 // calcul du premier point en coords globales :
#local f   = pFgetPoint( 2, surf, <U,V,0,1> )           
#local fdu = pFgetPoint( 2, surf, <U+du,V,0,1> )
#local fdv = pFgetPoint( 2, surf, <U,V+dv,0,1> )
#local F = <f.x/f.t, f.y/f.t, f.z/f.t> ;
#local FDU = <fdu.x/fdu.t, fdu.y/fdu.t, fdu.z/fdu.t> ;
#local FDV = <fdv.x/fdv.t, fdv.y/fdv.t, fdv.z/fdv.t> ;
// derivees premieres sur U et V
#local dfdu = (FDU - F) / du; 
#local dfdv = (FDV - F) / dv;
#local coeff = vlength( dfdu ) / vlength( dfdv );
#local tu = cos( A*pi/180 );              // pente sur U 
#local tv = sin( A*pi/180 ) * coeff;      // pente sur V    
#local tableau = array[N]
#local i=0; #while (i<N)
// calcul du point en coords globales :
#local f     = pFgetPoint( 2, surf, <U,V,0,1> )     
#local fdu   = pFgetPoint( 2, surf, <U+du,V,0,1> ) 
#local fdv   = pFgetPoint( 2, surf, <U,V+dv,0,1> )
#local f2du  = pFgetPoint( 2, surf, <U+2*du,V,0,1> ) 
#local f2dv  = pFgetPoint( 2, surf, <U,V+2*dv,0,1> )
#local fdudv = pFgetPoint( 2, surf, <U+du,V+dv,0,1> )
#local F = <f.x/f.t, f.y/f.t, f.z/f.t> ;
#local FDU = <fdu.x/fdu.t, fdu.y/fdu.t, fdu.z/fdu.t> ;
#local FDV = <fdv.x/fdv.t, fdv.y/fdv.t, fdv.z/fdv.t> ;
#local F2DU = <f2du.x/f2du.t,f2du.y/f2du.t,f2du.z/f2du.t> ;
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#local F2DV = <f2dv.x/f2dv.t,f2dv.y/f2dv.t,f2dv.z/f2dv.t> ;
#local FDUDV=<fdudv.x/fdudv.t,fdudv.y/fdudv.t,fdudv.z/fdudv.t>;
#local dfdu = (FDU - F) / du;  // derivee premiere sur U
#local dfdv = (FDV - F) / dv;  // derivee premiere sur V
// derivees secondes sur UU, VV, UV :
#local d2fduu = ((F2DU  - FDU)/du - (FDU-F)/du)/du;
#local d2fduv = ((FDUDV - FDU)/du - (FDV-F)/du)/dv;
#local d2fdvv = ((F2DV  - FDV)/dv - (FDV-F)/dv)/dv;
#local U = U + tu*dt; // point suivant en coords locales
#local V = V + tv*dt;   // ...
#local dudu = vdot(dfdu, dfdu);
#local dudv = vdot(dfdu, dfdv);
#local dvdv = vdot(dfdv, dfdv);
#local cu = -(  tu*tu*vdot(dfdu, d2fduu) 
+ 2*tu*tv*vdot(dfdu, d2fduv) + tv*tv*vdot(dfdu, d2fdvv) );
#local cv = -(  tu*tu*vdot(dfdv, d2fduu) 
+ 2*tu*tv*vdot(dfdv, d2fduv) + tv*tv*vdot(dfdv, d2fdvv) );    
#local kk = dudu*dvdv - dudv*dudv;
#if (abs(kk)<EPS) 

#local kk = (kk>=0) ? EPS : -EPS ; 
#end
#local gu = (cu*dvdv – cv*dudv)/kk; // acceleration

      #local gv = (cv*dudu – cu*dudv)/kk; // ...
     #local tu = tu + gu*dt;               // vitesse
     #local tv = tv + gv*dt;               // ...

#local tableau[i] = F;//chargement du point dans tableau
#local i=i+1; #end
tableau // retourne le tableau.

#end

#macro tracer_geodesique( surf, P, A, N, dt, coul, avec_normales )
var tableau = geodesique( surf, P, A, N, dt )
union

{ #local i=0; #while (i<taille(tableau))
sphere { tableau[i], 0.01  }

#local i=i+1; #end
une_couleur(coul)

}
#if (avec_normales)
#local i=0; #while (i<taille(tableau)-2)

#local p0 = tableau[i];
#local p1 = tableau[i+1];
#local p2 = tableau[i+2];
#local tt = p1-p0;
#local bb = vcross( p1-p0, p2-p0 );
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#local nn = vcross( bb, tt );
#local nn = vnormalize( nn );
cylinder { p0,p0 - nn*0.1, 
0.005 pigment { color rgb <1,0,0> } } 

#local i=i+1; #end
#end

#end

/*----------- MACROS COULEUR ET TEXTURE ------------*/

//#include "golds.inc"
#declare GOLD    = 1;
#declare MIROIR = 2;
#declare GRANIT  = 3;
#declare MARBRE   = 4;

#macro une_couleur( c )
texture     

  { pigment { color rgbt c }     
          finish { ambient 0.2 
                diffuse 0.6 
                specular 0.9 
                roughness 0.001    
                // reflection 0.4 }
    }
#end

#macro une_texture( choix )
    #switch (choix)
    #case (GOLD)
        texture { T_Gold_5A }
    #break
    #case (MIROIR)
        texture     
        {    pigment { color rgbt < 0,0,0 >   }
              finish {    ambient 0.2 
                    diffuse 0.7 
                    specular 0.9 
                    roughness 0.005 
                    reflection 0.9 }
          }
    #break
    #case (GRANIT)
        texture     
        {    pigment 
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            {     granite
                color_map
                {
                [ 0.0    color rgbt < 1,1,1,0.0 >   ]
                [ 0.8    color rgbt < 0.2,0.1,0,0.0 >   ]
                [ 1.0    color rgbt < 1,1,0,0.0 >   ]
                }
                scale 1/16
            }
              finish {    ambient 0.2 
                    diffuse 0.6 
                    specular 0.9 
                    roughness 0.005 
                    reflection 0.0 }
          }
    #break
    #case (MARBRE)
        texture     
        {    pigment 
            {     marble
                color_map
                {
                [ 0.0    color rgbt < 0.9,0.9,0.9,0.7 >   ]
                [ 1.0    color rgbt < 0.2,0.2,0.2,0.0 >   ]
                }
                scale 1/32
                //turbulence 0.5
                rotate < 0,0,90 >  
            }
              finish {     ambient 0.2 
                    diffuse 0.7 
                    specular 0.9 
                    roughness 0.005 
                    reflection 0.0 }
          }
    #break
    #end
#end

/*----------- MACROS POUR LE DESSIN DES COURBES, 
            DES SURFACES ET DES VOLUMES ------------*/

//    PROJECTIONS R4 - >   R3:
#macro pLprojection( f )   // cree un tableau de points dans R3
    #local n1 = taille( f );    
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    #local ff = array[n1]                     
    #local i=0; #while (i< n1)                
        #local p = f[i];
        #local temp = < p.x/p.t, p.y/p.t, p.z/p.t  >  ;
        #local ff[i] = temp;                 
    #local i=i+1; #end
    ff                                    
#end

#macro pSprojection( f )    // cree un tableau bidim dans R3
    #local n1 = taille( f );                
    #local n2 = taille( f[0] );                 
    #local ff = array[n1]                     
    #local pp = array[n2]                     
    #local i=0; #while (i< n1)                 
        #local j=0; #while (j< n2)             
            #local p = f[i][j];
            #local temp = < p.x/p.t, p.y/p.t, p.z/p.t  >  ;
            #local pp[j] = temp;         
        #local j=j+1; #end                        
        #local ff[i] = pp
    #local i=i+1; #end
    ff                                    
#end

#macro pLgetFrenet( curv, uu )
    #local ff = pFstretch( 1, curv, uu, uu+1 )
#local p0 = <ff[0].x/ff[0].t,ff[0].y/ff[0].t,ff[0].z/ff[0].t> ;
#local p1 = <ff[1].x/ff[1].t,ff[1].y/ff[1].t,ff[1].z/ff[1].t> ;
#local p2 = <ff[2].x/ff[2].t,ff[2].y/ff[2].t,ff[2].z/ff[2].t> ;
    #local tt = p1-p0;
    #local bb = vcross( tt, (p2-p0) );
    #local tt = vnormalize( tt );
    #local bb = vnormalize( bb );
    #local nn = vcross( bb, tt );
    array[4][4] { { nn.x, bb.x, tt.x, p0.x },
            { nn.y, bb.y, tt.y, p0.y },
            { nn.z, bb.z, tt.z, p0.z },
            { 0,0,0,1 } }
#end

#macro pSgetPijk( surf, p )
    #local ff = pFstretch( 2, surf, 
            < p.x,p.y,p.z,p.t >  , < p.x+1,p.y+1,p.z,p.t >   )
    #local p0 = < ff[0][0].x/ff[0][0].t, ff[0][0].y/ff[0][0].t,
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                     ff[0][0].z/ff[0][0].t  >  ;
    #local px = < ff[0][1].x/ff[0][1].t, ff[0][1].y/ff[0][1].t,
                     ff[0][1].z/ff[0][1].t  >  ;
    #local py = < ff[1][0].x/ff[1][0].t, ff[1][0].y/ff[1][0].t,
                     ff[1][0].z/ff[1][0].t  >  ;
    #local tx = px-p0;    #local tx = vnormalize( tx );
    #local ty = py-p0;    #local ty = vnormalize( ty );
    #local nn = vcross( tx, ty );
    array[4][4] { { nn.x, tx.x, ty.x, p0.x },
                    { nn.y, tx.y, ty.y, p0.y },
                    { nn.z, tx.z, ty.z, p0.z },
                    { 0,0,0,1 } }
#end

#macro pSgetNormale( surf, p )
    #local ff = pFstretch( 2, surf, 
            < p.x,p.y,p.z,p.t >  , < p.x+1,p.y+1,p.z,p.t >   )
    #local p0 = < ff[0][0].x/ff[0][0].t, ff[0][0].y/ff[0][0].t,
                     ff[0][0].z/ff[0][0].t  >  ;
    #local px = < ff[0][1].x/ff[0][1].t, ff[0][1].y/ff[0][1].t,
                     ff[0][1].z/ff[0][1].t  >  ;
    #local py = < ff[1][0].x/ff[1][0].t, ff[1][0].y/ff[1][0].t,
                     ff[1][0].z/ff[1][0].t  >  ;
    #local nn = vcross( px-p0, py-p0 );
    #local nn = vnormalize( nn );
    nn
#end

#macro _pScalculer_normales( surf, M, N )    
    // methode exacte mais longue
    #local nn = array[M][N]// surf est la surface NON subdivisée
    #local i=0; #while (i< M)// M et N : dims surface subdivisée
        #local j=0; #while (j< N)
    #local nn[i][j] = pSgetNormale(surf,<i/(M-1),j/(N-1),0,1>);
        #local j=j+1; #end
    #local i=i+1; #end
    nn
#end

#macro pScalculer_normales( aa )        
    // methode rapide mais approchée
    #local umax = taille(aa); // tableau des normales unitaires
    #local vmax = taille(aa[0]);        //
    #local nn = array[umax][vmax]
    // calcul des nn sauf aux bords maxis
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    #local i = 0; #while (i< umax-1)
        #local j = 0; #while (j< vmax-1)
            #local p0 = aa[i][j];
            #local p1 = aa[i+1][j];
            #local p2 = aa[i][j+1];
            #local nn[i][j] = 

vnormalize(vcross((p1-p0),(p2-p0)));
        #local j=j+1; #end
    #local i=i+1; #end
    // calcul aux bords
    #local i = 0; #while (i< umax-1)
      #local nn[i][vmax-1] = nn[i][vmax-2]*vdot(nn[i][vmax-3],

nn[i][vmax-2])*2-nn[i][vmax-3];
    #local i=i+1; #end
    #local i = 0; #while (i< vmax-1)
       #local nn[umax-1][i] = nn[umax-2][i]*vdot(nn[umax-2][i],

nn[umax-3][i])*2-nn[umax-3][i];
    #local i=i+1; #end
    #local nn[umax-1][vmax-1] = 

nn[umax-2][vmax-2]*vdot(nn[umax-2][vmax-2], 
nn[umax-3][vmax-3])*2 - nn[umax-3][vmax-3];

// moyenne des normales sur 2 triangles adjacents sur la diag
    #local i = 1; #while (i< umax-1)
        #local j = 1; #while (j< vmax-1)
            #local nn[i][j] = (nn[i-1][j-1] 

+ 2*nn[i][j] + nn[i+1][j+1])/4;
        #local j=j+1; #end
    #local i=i+1; #end
    nn
#end

//    MACROS DE DESSIN DE COURBES, DE SURFACES ET DE VOLUMES:

#macro _pLdraw( f, rayon ) // dessine une suite de cylindres
    #local ff = pLprojection( f )
    #local n = taille( f );
    #local i = 0; #while (i< n-1)
        cylinder { ff[i], ff[i+1], rayon }
    #local i=i+1; #end
#end

#macro _pSdraw( ff, nn, qualite )                
    // dessine un pFmaillage de triangles
    #local umax = taille(ff);
    #local vmax = taille(ff[0]);
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    mesh
    {    #local i = 0; #while (i< umax-1)
        #local j = 0; #while (j< vmax-1)
            #local p00 = ff[i][j];
            #local p10 = ff[i+1][j];
            #local p01 = ff[i][j+1];
            #local p11 = ff[i+1][j+1];
            #if (qualite)
                #local n00 = nn[i][j];
                #local n10 = nn[i+1][j];
                #local n01 = nn[i][j+1];
                #local n11 = nn[i+1][j+1];
            #end
            #if (qualite)
        smooth_triangle { p00, n00, p10, n10, p11, n11 }
        smooth_triangle { p00, n00, p11, n11, p01, n01 }
            #else
                triangle { p00, p10, p11 }
                triangle { p00, p11, p01 }
            #end
        #local j=j+1; #end
        #local i=i+1; #end
    }
#end

#macro _pVfaces( vvv )// retourne les 6 surfaces limites d'un volume
    #local nx = taille( vvv );
    #local ny = taille( vvv[0] );
    #local nz = taille( vvv[0][0] );
    #local surf = array[6]    
    #local ss = array[nx]
    #local i=0;    #while (i< nx)
        #local pp = array[ny]
        #local j=0;    #while (j< ny)
            #local pp[j] = vvv[nx-1-i][ny-1-j][nz-1]; 
        #local j=j+1; #end
        #local ss[i] = pp
    #local i=i+1; #end
    #local surf[0] = ss    
    #local ss = array[nx]
    #local i=0;    #while (i< nx)
        #local pp = array[nz]
        #local j=0;    #while (j< nz)
            #local pp[j] = vvv[nx-1-i][ny-1][j];
        #local j=j+1; #end

151 / 192



pascalian forms | pFlibs.inc file

        #local ss[i] = pp
    #local i=i+1; #end
    #local surf[1] = ss    
    #local ss = array[ny]
    #local i=0;    #while (i< ny)
        #local pp = array[nz]
        #local j=0;    #while (j< nz)
            #local pp[j] = vvv[nx-1][i][j];
        #local j=j+1; #end
        #local ss[i] = pp
    #local i=i+1; #end
    #local surf[2] = ss    
    #local ss = array[nx]
    #local i=0;    #while (i< nx)
        #local pp = array[ny]
        #local j=0;    #while (j< ny)
            #local pp[j] = vvv[nx-1-i][j][0];
        #local j=j+1; #end
        #local ss[i] = pp
    #local i=i+1; #end
    #local surf[3] = ss    
    #local ss = array[nx]
    #local i=0;    #while (i< nx)
        #local pp = array[nz]
        #local j=0;    #while (j< nz)
            #local pp[j] = vvv[nx-1-i][0][nz-1-j];
        #local j=j+1; #end
        #local ss[i] = pp
    #local i=i+1; #end
    #local surf[4] = ss    
    #local ss = array[ny]
    #local i=0;    #while (i< ny)
        #local pp = array[nz]
        #local j=0;    #while (j< nz)
            #local pp[j] = vvv[0][i][nz-1-j];
        #local j=j+1; #end
        #local ss[i] = pp
    #local i=i+1; #end
    #local surf[5] = ss
    surf
#end

#macro pVdrawPijk( vol, p, longueur, rayon )   
// A REVOIR, REPERE NON ORTHONORME
    // dessine le repère tangent en p au volume  
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    #local p0 = pFgetPoint( 3, vol, <p.x, p.y, p.z, p.t> )
    #local pu = pFgetPoint( 3, vol, <p.x+1, p.y, p.z, p.t> )
    #local pv = pFgetPoint( 3, vol, <p.x, p.y+1, p.z, p.t> )
    #local pw = pFgetPoint( 3, vol, <p.x, p.y, p.z+1, p.t> )
    #local q0 = <p0.x/p0.t, p0.y/p0.t, p0.z/p0.t> ;
   #local qu = <pu.x/pu.t, pu.y/pu.t, pu.z/pu.t> ;
   #local qv = <pv.x/pv.t, pv.y/pv.t, pv.z/pv.t> ;
   #local qw = <pw.x/pw.t, pw.y/pw.t, pw.z/pw.t> ;
    #local ti = vnormalize( qu-q0 ) 
    #local tj = vnormalize( qv-q0 ) 
    #local tk = vnormalize( qw-q0 ) 
    union
{ cylinder{q0,q0+ti*longueur, rayon une_couleur( < 1,0,0 >  ) }
  cylinder{q0,q0+tj*longueur, rayon une_couleur( < 0,1,0 >  ) }
  cylinder{q0,q0+tk*longueur, rayon une_couleur( < 0,0,1 >  ) }
}
#end 

#macro pSdrawPijk( surf, p, longueur, rayon )        
    // dessine le repère tangent en p à la surface  
    #local mat = pSgetPijk( surf, p )
    #local nn = < mat[0][0], mat[1][0], mat[2][0]  >  ;
    #local tx = < mat[0][1], mat[1][1], mat[2][1]  >  ;
    #local ty = < mat[0][2], mat[1][2], mat[2][2]  >  ;
    #local p0 = < mat[0][3], mat[1][3], mat[2][3]  >  ;
    union
{ cylinder{p0,p0-nn*longueur, rayon une_couleur( < 1,0,0 >  ) }
  cylinder{p0,p0+tx*longueur, rayon une_couleur( < 0,1,0 >  ) }
  cylinder{p0,p0+ty*longueur, rayon une_couleur( < 0,0,1 >  ) }
}
#end 

#macro pSdrawNormale( surf, p, longueur, rayon )        
    // dessine la normale en p à la surface
    #local ff = pFstretch( 2, surf, 

< p.x,p.y,p.z,p.t >, < p.x+1,p.y+1,p.z,p.t >   )
    #local p0 = < ff[0][0].x/ff[0][0].t, 

ff[0][0].y/ff[0][0].t, ff[0][0].z/ff[0][0].t  >;
    #local px = < ff[0][1].x/ff[0][1].t, 

ff[0][1].y/ff[0][1].t, ff[0][1].z/ff[0][1].t  >;
    #local py = < ff[1][0].x/ff[1][0].t, 

ff[1][0].y/ff[1][0].t, ff[1][0].z/ff[1][0].t  >;
    #local nn = vcross( px-p0, py-p0 );
    #local nn = vnormalize( nn );
    cylinder { p0, p0-nn*longueur, rayon }
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#end

#macro pLdrawFrenet( curv, uu, longueur, rayon )        
    // dessine le repère de frenet en uu à la courbe
    #local mat = pLgetFrenet( curv, uu )
    #local nn = < mat[0][0], mat[1][0], mat[2][0]  >  ;
    #local bb = < mat[0][1], mat[1][1], mat[2][1]  >  ;
    #local tt = < mat[0][2], mat[1][2], mat[2][2]  >  ;
    #local p0 = < mat[0][3], mat[1][3], mat[2][3]  >  ;
    union
    { cylinder{ p0,p0+nn*longueur, rayon une_couleur(<0,1,0>) }
      cylinder{ p0,p0+bb*longueur, rayon une_couleur(<0,0,1>) }
      cylinder{ p0,p0+tt*longueur, rayon une_couleur(<1,0,0>) }
    }
#end

//    INTERFACE POUR LE DESSIN DES FORMES:

//    1)    GESTION DES PARAMETRES D'AFFICHAGE

#declare STANDARD       = -1;
#declare POINT          = 0;
#declare COURBE         = 1;
#declare SURFACE        = 2;
#declare ENVELOPPE      = 3;
#declare HYPER          = 4;
#declare FEUILLES       = 5;
#declare FIBRES         = 6;
#declare NORMALES       = 7;
#declare REPERE         = 8;
#declare COULEUR        = 0;
#declare TEXTURE        = 1;
#declare FACETTES       = -1;
#declare LISSE          = 0;
#declare SUPER          = 1;
#declare FORME          = POINT;
#declare ASPECT         = COULEUR;
#declare QUALITE        = FACETTES;
#declare RAYON          = 0.05;
#declare LONGUEUR       = 0.1;
#declare CHOIX_COULEUR  = < 1,0,0 >;
#declare CHOIX_TEXTURE  = 1;

#macro standards()
    #declare FORME          = POINT;
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    #declare ASPECT         = COULEUR;
    #declare QUALITE        = FACETTES;
    #declare RAYON          = 0.05;
    #declare LONGUEUR       = 0.1;
    #declare CHOIX_TEXTURE  = 1;
    #ifdef (CHOIX_COULEUR) #undef CHOIX_COULEUR #end    
    #declare CHOIX_COULEUR  = < 1,0,0 >;
    #ifdef (RECURSION) #undef RECURSION #end
#end

#macro finesse( r )
    #ifdef (RECURSION) #undef RECURSION #end     
    #declare RECURSION = r; 0 
#end

#macro point( r )     
    #declare FORME = POINT; #declare RAYON = r; 0 
#end

#macro courbe( r )         
    #declare FORME = COURBE; #declare RAYON = r; 0 
#end

#macro surface( q )     
    #declare FORME = SURFACE; #declare QUALITE = q; 0 
#end

#macro enveloppe( q )     
    #declare FORME = ENVELOPPE; #declare QUALITE = q; 0 
#end

#macro feuilles( q )     
    #declare FORME = FEUILLES; #declare QUALITE = q; 0 
#end

#macro fibres( r )        
    #declare FORME = FIBRES; #declare RAYON = r; 0 
#end

#macro normales( r, l ) 
    #declare FORME = NORMALES; #declare RAYON = r; 
    #declare LONGUEUR = l; 0 
#end

#macro repere( r, l )     

155 / 192



pascalian forms | pFlibs.inc file

    #declare FORME = REPERE; #declare RAYON = r; 
    #declare LONGUEUR = l; 0 
#end

#macro ma_couleur( c )     
    #declare ASPECT = COULEUR; 
    #ifdef (CHOIX_COULEUR) #undef CHOIX_COULEUR #end 
    #declare CHOIX_COULEUR = c; 0 
#end

#macro ma_texture( c )     
    #declare ASPECT = TEXTURE; #declare CHOIX_TEXTURE = c; 0
#end

//    2)    APPEL DES MACROS

#macro __pSdraw( f, ff, etat )
    #switch (etat)
    #case (FACETTES)
        #local nn = ff    // pour leurer la macro _draw_surface
        _pSdraw( ff, nn, false)
    #break
    #case (LISSE)
        #local nn = pScalculer_normales( ff )
        _pSdraw( ff, nn, ((QUALITE >=LISSE) ? true : false))
    #break
    #case (SUPER)    
        #local nn = 
    _pScalculer_normales( f, taille(ff), taille(ff[0]) )
        _pSdraw( ff, nn, ((QUALITE >=LISSE) ? true : false))
    #break
    #end
#end

#macro pPdraw( f )
    pFdraw( 0, f, RAYON )
#end

#macro pLdraw( f )
    #ifndef (RECURSION) #declare RECURSION = 0; #end
    #local pf = pFsubdivision( 1, f, < RECURSION,0,0,0 >   )
    #local ppf = pLprojection( pf )
    #switch (FORME)     
    #case (POINT)    
        union { pFdraw( 1, pf, RAYON )     }
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    #break
    #case (COURBE)    
        union { _pLdraw( pf, RAYON ) }        
    #break
    #case (REPERE)
        #local n = taille( pf );
        union
        {    #local i = 0; #while (i< n)
            pLdrawFrenet( f, i/(n-1), LONGUEUR, RAYON )
            #local i=i+1; #end
        }
    #break
    #end
#end

#macro pSdraw( f )
    #ifndef (RECURSION) #declare RECURSION = < 0,0 >  ; #end
    #local pf = 
    pFsubdivision( 2, f, < RECURSION.x,RECURSION.y,0,0 >   )
    #local ppf = pSprojection( pf )
    #switch (FORME)     
    #case (POINT)    
        union { pFdraw( 2, pf, RAYON ) }    
    #break
    #case (COURBE)
        union
        {   #local i=0; #while(i< taille(pf))    
                _pLdraw( pf[i], RAYON ) 
            #local i=i+1; #end
        }   
    #break
    #case (SURFACE)
        __pSdraw( f, ppf, QUALITE )    
    #break
    #case (NORMALES)        
    // il faut calculer le juste point base de la normale...
        #local m = taille(ppf);
        #local n = taille(ppf[0]);
        #local nn = _pScalculer_normales( f, m, n  )    
        union
        {    #local i=0; #while(i< m)
            #local j=0; #while(j< n)
    cylinder{ ppf[i][j], ppf[i][j] + nn[i][j]*LONGUEUR, RAYON}
            #local j=j+1; #end
            #local i=i+1; #end
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        }
    #break
    #end
#end

#macro pVdraw( f )
    #ifndef (RECURSION) #declare RECURSION = < 0,0,0 >  ; #end
    #switch (FORME) 
    #case (POINT)    
        #local pf = pFsubdivision( 3, f, <

 RECURSION.x,RECURSION.y,RECURSION.z,0 >   )
        union { pFdraw( 3, pf, RAYON ) }        
    #break
    #case (ENVELOPPE)
        #local surf = _pVfaces( f )    
        union
        {   #local i=0; #while (i< 6)
            #local psurfi = pFsubdivision( 2, surf[i], <

 RECURSION.x,RECURSION.y,RECURSION.z,0 > )
            #local ffi = pSprojection( psurfi )
            __pSdraw( surf[i], ffi, QUALITE )
            #local i=i+1;    #end
        }
    #break
    #case (FEUILLES)
         #local pf = pFsubdivision(3,f,RECURSION )
        union 
        {   #local n = taille(pf);
            #local i=0; #while (i< n)
            #local psurfi = pf[i]
            #local ffi = pSprojection( psurfi )
            __pSdraw( pf[i], ffi, QUALITE )
            #local i=i+1; #end
        }
    #break
    #case (FIBRES)
        #local pf = pFsubdivision( 3, f, <

 RECURSION.x,RECURSION.y,RECURSION.z,0 >  )
        union 
        {   #local nb = taille(pf);
            #local m = taille(pf[0]);
            #local n = taille(pf[0][0]);
            #local i=0; #while (i< m)
            #local j=0; #while (j< n)
                #local poil = array[nb]
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                #local k=0; #while (k< nb)
                    #local poil[k] = pf[k][i][j];
                #local k=k+1; #end
                _pLdraw( poil, RAYON )
            #local j=j+1; #end
            #local i=i+1; #end
        }
    #break
    #end
#end

#macro pHdraw( f )
    #ifndef (RECURSION) #declare RECURSION = < 0,0,0,0 >  ; #end
    #local pf = pFsubdivision( 4, f, RECURSION )
    union { pFdraw( 4, pf, RAYON ) }
#end

//    2)    MACRO APPELANTE GENERALE

#macro draw( dim, f, options )
    object
    {    #switch (dim)
            #case (0)    pPdraw( f )    #break
            #case (1)    pLdraw( f )    #break
            #case (2)    pSdraw( f )    #break
            #case (3)    pVdraw( f )    #break
            #case (4)    pHdraw( f )    #break
            #else    #render "...nothing out there! Yet..."
        #end
        #if (ASPECT = COULEUR)
            une_couleur( CHOIX_COULEUR ) #end
        #if (ASPECT = TEXTURE)
            une_texture( CHOIX_TEXTURE ) #end
    }
    standards() // réinitialise les valeurs des paramètres
#end

/*----------- MACROS UTILES ------------*/

#macro axes( Ox, Oy, Oz )
    #if (Ox) cylinder { < -10,0,0 >  ,< 10,0,0 >  , 0.005 
            pigment{ color rgb  < 1,0,0 >   } }     #end
    #if (Oy) cylinder { < 0,-10,0 >  , < 0,10,0 >  , 0.005 
            pigment { color rgb  < 0,1,0 >   } }    #end
    #if (Oz) cylinder { < 0,0,-10 >  , < 0,0,10 >  , 0.005 
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            pigment { color rgb  < 0,0,1 >   } }    #end
#end

#declare OX  = 1; 
#declare OY  = 2; 
#declare OZ  = 3; 
#declare AXO = 4;

#macro vue_axonometrique( axe, zoom )
    camera 
    {    orthographic
        #switch (axe)
            #case (OX)    location < 10,0,0 >       #break
            #case (OY)    location < 0,10,0 >      #break
            #case (OZ)    location < 0,0,-10 >     #break
            #case (AXO)   location < 10,10,-10 > #break
        #end
        right < 1,0,0 >   
        look_at < 0,0,0 >   scale 1/zoom
    }
    #switch (axe)
        #case (OX)    axes( false, true, true ) #break
        #case (OY)    axes( true, false, true ) #break
        #case (OZ)    axes( true, true, false ) #break
        #case (AXO)   axes( true, true, true )  #break
    #end
#end

#macro vue_perspective( observateur )
    camera {    location observateur 
                right < 1,0,0 > look_at < 0,0,0 >   }
    axes( true, true, true )
#end

#macro sol( hauteur )
    plane 
    {     < 0,1,0 >  , hauteur
        texture     
        {    pigment {  color rgb 0.5 }    
        // checker color rgb 0.3 color rgb 0.7 scale 1/4
            finish {     ambient 0.2 
                    diffuse 0.5 
                    specular 0.7 
                    roughness 0.01 
                    reflection 0.8
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                }
        }
    }
#end

#macro ciel()
    sky_sphere 
    {     pigment 
        {     marble    // gradient y 
            color_map { 
                    [0.0 color rgb 1/4] 
                    [1.0 color rgb 3/4] 
                }
            //scale 1/2
            turbulence 0.5
            rotate < 0,0,90 >  
        }
    }
#end

/*
DIVERSES MACROS UTILES

*/

#macro taille( _f ) // retourne la taille d'un tableau
    dimension_size( _f,1 )
#end

/*
AFFICHAGE DES COMPOSANTES D'UN VECTEUR

*/
#macro affiche_vect( vvv )
    #render "\n vecteur: < "
    #local n = taille( vvv );
    #local i=0; #while (i< n)
        #render concat( str( vvv[i], 4,4 ), "," )
    #local i=i+1; #end
    #render " >  \n"
#end

/*
    AFFICHAGE DES TERMES D'UNE MATRICE
*/
#macro affiche_mat( mat )    // 
    #render "\n matrice:\n "
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    #local n1= dimension_size( mat, 1 );
    #local n2= dimension_size( mat, 2 );
    #local i=0; #while (i< n1)        // pour chaque ligne i
        #render concat( "ligne ", str(i,0,0), ": " )
        #local j=0; #while (j< n2)    // pour chaque colonne j
            #render concat( str( mat[i][j],4,4 ), ", " )
        #local j=j+1; #end
        #render "\n"
    #local i=i+1; #end
    #render "\n"
#end

/*
    INVERSION D'UNE MATRICE CARREE 
    PAR LA METHODE DE GAUSS_JORDAN
    test:
    #local mat = array[3][3] { {3,2,1}, {1,3,2}, {2,4,3} }
    affiche_mat( mat )
    #local tam = inverse_mat( mat )
    affiche_mat( tam )
    stop
*/

#macro inverse_mat( ma )
    #local N = taille(ma);
    // creation d'une matrice [N][2*N]
    #local mat = array[N][2*N]
    #local I=0; #while (I< N)
        #local J=0; #while (J< N)
            #local mat[I][J] = ma[I][J];
        #local J=J+1; #end
    #local I=I+1; #end
    #local K=0; #while (K< N)
        #local I=0; #while (I< N)
            #if (K=I)    
                #local mat[I][N+K] = 1;    
            #else
                #local mat[I][N+K] = 0;    
            #end
        #local I=I+1; #end
    #local K=K+1; #end
    // start:
    #local EPS  = 0.0000001;
    #local singularite = false;
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    #local DetA = 1;
    #local K = 0;    #while ( (K< N) & (!singularite) )
    // recherche de l'indice L du pivot maximum
        #local L=K;
        #local I=K; #while (I< N)
            #if ( abs(mat[I][K])  >   abs(mat[L][K]) )
                #local L=I;    
            #end
        #local I=I+1; #end
        #if ( abs(mat[L][K]) <= EPS )            
            #local singularite = true;    
        #else
            #if (L!=K)
                #local I=K; #while (I< 2*N)
                    #local mmm = mat[K][I];
                    #local mat[K][I] = mat[L][I];
                    #local mat[L][I] = mmm;
                #local I=I+1; #end
                #local DetA = -DetA;
            #end
        #end    
        #local DetA = DetA*mat[K][K];
    // elimination de xk
        #if (!singularite)
            #local J=K+1; #while (J< 2*N)
            #local mat[K][J] = mat[K][J]/mat[K][K];
            #local J=J+1; #end
            #local mat[K][K] = 1;
            #local I=0; #while (I< N)
                #if (I!=K)
                    #local J=K+1; #while (J< 2*N)
                    #local mat[I][J] = mat[I][J] -
                         (mat[I][K]*mat[K][J]);
                    #local J=J+1; #end
                    #local mat[I][K] = 0;
                #end
            #local I=I+1; #end
        #end
    #local K=K+1; #end
    #local tam = array[N][N]
    #local I=0; #while (I< N)
        #local J=0; #while (J< N)
            #local tam[I][J] = mat[I][J+N];
        #local J=J+1; #end
    #local I=I+1; #end
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    tam
#end
#macro produit_mat( mat, vect )
    #local n= dimension_size( mat, 1 );
    #local tcev = array[n]
    #local i=0; #while (i< n)
        #local dd = 0;
        #local j=0; #while (j< n)
            #local dd = dd + mat[i][j]*vect[j];
        #local j=j+1; #end
        #local tcev[i] = dd;
    #local i=i+1; #end
    tcev
#end

/* ----------- EXPORT ET IMPORT DE FICHIERS FORMES --------- */

/*
    conserve une forme calculée sous forme texte
    utile dans le cas d'animations ou éventuellement
    pour transmettre des informations à d'autres programmes
*/

/*
    ECRITURE D,UNE COURBE DANS UN FICHIER:
    input: la courbe et le nom du fichier
    output: le fichier
    nota:    attention a ne pas ecraser un fichier 

de meme nom, il n'y a pas de controle...
    appel: #local courb = creer_une_courbe(x,x,...)

ecrire_courbe( courb, "fichier.txt" )
*/
#macro pLwrite( f, fichier )
    #fopen myfile fichier write
    #local umax = taille(f);
    #write( myfile, "\"Une pCourbe\",\n" )
    #write( myfile, umax, ",\n" )
    #local i=0; #while (i< umax)
        #write( myfile, f[i], ",\n" )
    #local i=i+1; #end
    #fclose myfile
#end
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/*
    LECTURE D,UNE COURBE DEPUIS UN FICHIER:
    input:         le nom du fichier
    output:        la courbe
    nota:    
    appel:         #local courb = lire_courbe( "fichier.txt" )
*/
#macro pLread( fichier )
    #fopen myfile fichier read
    #read( myfile, titre )
    #read( myfile, umax )
    #local ff = array[umax]
    #local i=0; #while (i< umax)
        #ifdef (ddd) #undef ddd #end    // peut etre a revoir
        #read( myfile, ddd )
        #local ff[i] = ddd;
    #local i=i+1; #end
    #fclose myfile
    /*return*/ ff
#end

/*
    ECRITURE D,UNE SURFACE DANS UN FICHIER:
    input: la surface et le nom du fichier
    output: le fichier
    nota: attention a ne pas ecraser un fichier de meme nom
    appel: #local surf = creer_une_surface(x,x,...)

ecrire_surface( surf, "fichier.txt" )
*/
#macro pSwrite( f, fichier )
    #fopen myfile fichier write
    #local umax = taille(f);
    #local vmax = taille(f[0]);
    #write( myfile, "\"Une pSurface\",\n" )
    #write( myfile, umax, ",\n" )
    #write( myfile, vmax, ",\n" )
    #local i=0; #while (i< umax)
        #local j=0; #while (j< vmax)
            #write( myfile, f[i][j], ",\n" )
        #local j=j+1; #end        
    #local i=i+1; #end
    #fclose myfile
#end
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/*
     LECTURE D,UNE SURFACE DEPUIS UN FICHIER:
    input: le nom du fichier
    output: la surface
    nota:    
    appel: #local surf = lire_surface( "fichier.txt" )
*/
#macro pSread( fichier )
    #fopen myfile fichier read
    #read( myfile, titre )
    #read( myfile, umax )
    #read( myfile, vmax )
    #local ff = array[umax]
    #local pp = array[vmax]
    #local i=0; #while (i< umax)
        #local j=0; #while (j< vmax)
            #ifdef (ddd) #undef ddd #end
            #read( myfile, ddd )
            #local pp[j] = ddd;
        #local j=j+1; #end    
        #local ff[i] = pp    
    #local i=i+1; #end
    #fclose myfile
    /*return*/ ff
#end

//    end of the pFlibs.inc file, the show can start now...
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pFbook.inc file

Macros  used  for  rendering  most  of  the  pictures  in  this  book  habe  been  compiled  in  the 
« pFbook.inc » file and are listed below, following the structure of the different sections. They illustrate 
the unitary approach and can be used as a basis for further explorations.

// file « pFbook.inc »
// under GPL open source licence
// http://marty.alain.free.fr
// version of 01/06/2004

// 11 : FORMES MULTILINEAIRES RECURSIVES

#macro pF_111() // 4 points
    draw(0,<-0.5,-0.5,-0.5,1.0>, point(0.1)+ ma_couleur(<1,0,0,0>))
    draw(0,< 0.5, 0.5, 0.5,1.0>, point(0.1) + ma_texture(GRANIT))
    draw(0,< 0.5, 0.5,-0.5,1.0>, point(0.1) + ma_texture(MARBRE))
    draw(0,< 0.0, 0.0, 0.0, 1.0>, point(0.3) + ma_texture(GOLD))
#end

#macro pF_112( aspect ) // pL2
    #local p0 = <-0.5,-0.5,-0.5, 1.0> ;
    #local p1 = < 0.5,-0.0,-0.5, 1.0> ;
    #local pL2 = array[2] { p0, p1 }
    #switch (aspect) 
    #case (0) draw( 1, pL2, 

finesse(0)+ point(0.02) + ma_couleur(<1,1,0,0>) ) #break
    #case (1) draw( 1, pL2, 

finesse(1)+ point(0.02) + ma_couleur(<1,1,0,0>) ) #break
    #case (2) draw( 1, pL2, 

finesse(2)+ point(0.02) + ma_couleur(<1,1,0,0>) ) #break
    #case (3) draw( 1, pL2, 

finesse(3)+ point(0.02) + ma_couleur(<1,1,0,0>) ) #break
    #case (4) draw( 1, pL2, 

finesse(0)+ courbe(0.02)+ ma_couleur(<1,1,0,0>) ) #break
    #end
#end

#macro pF_113( aspect ) // pS22
    #local pL2_0 = array[2] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.5, 0.0,-0.5, 1.0> }
    #local pL2_1 = array[2] { <-0.5, 0.0, 0.5, 1.0>, 
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< 0.5,-0.5, 0.5, 1.0> }
    #local pS22  = array[2] { pL2_0, pL2_1 }
    #switch (aspect) 
    #case (0) draw( 2, pS22, 

finesse(<0,0>) + courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (1) draw( 2, pS22, 

finesse(<1,0>) + courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (2) draw( 2, pS22, 

finesse(<2,0>) + courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (3) draw( 2, pS22, 

finesse(<3,0>) + courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (4) draw( 2, pS22, 

finesse(<3,3>)+surface(LISSE)+ma_couleur(<1,1,0,0.5>))  #break
    #case (5) draw( 2, pS22, 

finesse(<3,3>)+point(0.01) + ma_couleur(<1,1,0,0.5>) ) #break
    #case (6) draw( 2, pS22, 

finesse(<3,3>)+normales(0.01,-0.1) 
 + ma_couleur(<1,1,0,0.5>)) #break

    #end
#end

#macro pF_114( aspect ) // pV222
    #local pL2_0 = array[2] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.5, 0.0,-0.5, 1.0> }
    #local pL2_1 = array[2] { <-0.5, 0.0, 0.5, 1.0>, 

< 0.5,-0.5, 0.5, 1.0> }
    #local pS22  = array[2] { pL2_0, pL2_1 }
    #local pS22_0 = pS22
    #local pS22_1 = pS22    

pFtranslate( 2, pS22_1, <0, 0.5,0> ) 
pFrotate( 2, pS22_1, <0,-15,0> )

    #local pV222 = array[2] { pS22_0, pS22_1 }
    #switch (aspect) 
    #case (0) draw( 3, pV222, finesse(<0,3,3,0>) 

+ feuilles(LISSE) + ma_couleur(<1,1,0,0>) ) #break
    #case (1) draw( 3, pV222, finesse(<1,3,3,0>) 

+ feuilles(LISSE) + ma_couleur(<1,1,0,0>) ) #break
    #case (2) draw( 3, pV222, finesse(<2,3,3,0>) 

+ feuilles(LISSE) + ma_couleur(<1,1,0,0>) ) #break
    #case (3) draw( 3, pV222, finesse(<3,3,3,0>) 

+ feuilles(LISSE) + ma_couleur(<1,1,0,0>) ) #break
    #case (4) draw( 3, pV222,finesse(<2,3,3,0>) 

+ enveloppe(LISSE) + ma_couleur(<1,1,0,0.5>) ) #break
    #case (5) draw( 3, pV222, finesse(<0,3,3,0>) 

+ fibres(0.01) + ma_couleur(<1,1,0,0>) ) #break
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    #case (6) draw( 3, pV222, finesse(<3,3,3,0>) 
+ point(0.01) + ma_couleur(<1,0,0,0>) ) #break

    #end
#end

#macro pF_115() // pH2222
    #local pL2_0 = array[2] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.5, 0.0,-0.5, 1.0> }
    #local pL2_1 = array[2] { <-0.5, 0.0, 0.5, 1.0>, 

< 0.5,-0.5, 0.5, 1.0> }
    #local pS22  = array[2] { pL2_0, pL2_1 }
    #local pS22_0 = pS22
    #local pS22_1 = pS22    

pFtranslate( 2, pS22_1, <0, 0.5,0> ) 
pFrotate( 2, pS22_1, <0,-15,0> )

    #local pV222 = array[2] { pS22_0, pS22_1 }
    #local pV222_0 = pV222

pFscale( 3, pV222_0, <1.0,1.8,1.0> )
    #local pV222_1 = pV222

pFscale( 3, pV222_1, <0.8,0.8,0.8> )
    #local pH2222 = array[2] { pV222_0, pV222_1 }
    draw( 4, pH2222, 

finesse(<2,3,3,3>) + point(0.01) + ma_couleur(<1,1,0,0>) )
#end
  
// 12 : DIAGONALISATION

#macro pF_121( aspect ) // pS22 et pL3
    #local pL2_0 = array[2] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.5, 0.0,-0.5, 1.0> }
    #local pL2_1 = array[2] { <-0.5, 0.5, 0.5, 1.0>, 

< 0.5,-0.5, 0.5, 1.0> }
    #local pS22  = array[2] { pL2_0, pL2_1 }
    #local pL3 = pFdiagonalisation( 2, pS22 )
    draw( 2, pS22, 

finesse(<3,3>)+surface(LISSE)+ma_couleur(<1,1,0,0.5>) )
    #switch (aspect) 
    #case (0) draw( 1, pL3, 

finesse(0) + point(0.02) + ma_couleur(<1,0,0,0>) ) #break
    #case (1) draw( 1, pL3, 

finesse(1) + point(0.02) + ma_couleur(<1,0,0,0>) ) #break
    #case (2) draw( 1, pL3, 

finesse(2) + point(0.02) + ma_couleur(<1,0,0,0>) ) #break
    #case (3) draw( 1, pL3, 

finesse(3) + point(0.02) + ma_couleur(<1,0,0,0>) ) #break
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    #case (4) draw( 1, pL3, 
finesse(6) + courbe(0.02) + ma_couleur(<1,1,0,0>) )

    draw( 1, pL3, 
finesse(0) + point(0.04) + ma_couleur(<1,0,0,0>) ) 

    #break
    #end
#end

#macro pF_122( aspect ) // pS23 et pL4
    #local pL3_0 = array[3] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.0, 0.5,-0.5, 1.0>, < 0.5,-0.5,-0.5, 1.0> }
    #local pL3_1 = array[3] { <-0.5, 0.5, 0.5, 1.0>, 

< 0.0,-0.5, 0.5, 1.0>, < 0.5, 0.5, 0.5, 1.0> }
    #local pS23  = array[2] { pL3_0, pL3_1 }
    #local pL4 = pFdiagonalisation( 2, pS23 )
    #switch (aspect) 
    #case (0) draw( 2, pS23, finesse(<0,4>) 

+ courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (1) draw( 2, pS23, finesse(<1,4>) 

+ courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (2) draw( 2, pS23, finesse(<2,4>) 

+ courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (3) draw( 2, pS23, finesse(<3,4>) 

+ courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (4) draw( 2, pS23, finesse(<4,4>) 

+ surface(LISSE) + ma_couleur(<1,1,0,0.5>) ) #break
    #end
    #switch (aspect) 
    #case (0) draw( 1, pL4, finesse(0) + point(0.02) 

+ ma_couleur(<1,0,0,0>) ) #break
    #case (1) draw( 1, pL4, finesse(1) + point(0.02) 

+ ma_couleur(<1,0,0,0>) ) #break
    #case (2) draw( 1, pL4, finesse(2) + point(0.02) 

+ ma_couleur(<1,0,0,0>) ) #break
    #case (3) draw( 1, pL4, finesse(3) + point(0.02) 

+ ma_couleur(<1,0,0,0>) ) #break
    #case (4) 
    draw( 1, pL4, finesse(5) + courbe(0.02) 

+ ma_couleur(<1,1,0,0>) )
    draw( 1, pL4, finesse(0) + point(0.04) 

+ ma_couleur(<1,0,0,0>) ) 
    #break
    #end
#end
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#macro pF_123() // pV222, pS23 et pL4
    #local pL2_0 = array[2] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.5, 0.0,-0.5, 1.0> }
    #local pL2_1 = array[2] { <-0.5, 0.0, 0.5, 1.0>, 

< 0.5,-0.5, 0.5, 1.0> }
    #local pS22  = array[2] { pL2_0, pL2_1 }
    #local pS22_0 = pS22
    #local pS22_1 = pS22 pFtranslate( 2, pS22_1, <0, 0.5,0> ) 

pFrotate( 2, pS22_1, <0,-15,0> )
    #local pV222 = array[2] { pS22_0, pS22_1 }
    #local pS23 = pFdiagonalisation( 3, pV222 )
    #local pL4 = pFdiagonalisation( 2, pS23 )
    draw( 3, pV222, finesse(<1,3,3,0>) + enveloppe(LISSE) 

+ ma_couleur(<1,1,0,0.5>) )    
    draw( 2, pS23, finesse(<4,4>) + surface(LISSE) 

+ ma_couleur(<0,1,0,0>) ) 
    draw( 1, pL4, finesse(5) + courbe( 0.02 ) 

+ ma_couleur(<1,0,0,0>) )
#end

#macro pF_124( aspect ) // pS33 et pL5
    #local pL3_0 = array[3] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.0, 0.5,-0.5, 1.0>, < 0.5,-0.5,-0.5, 1.0> }
    #local pL3_1 = array[3] { <-0.5, 0.5,-0.0, 1.0>, 

< 0.0, 0.5,-0.0, 1.0>, < 0.5,-0.5,-0.0, 1.0> }
    #local pL3_2 = array[3] { <-0.5, 0.5, 0.5, 1.0>, 

< 0.0,-0.5, 0.5, 1.0>, < 0.5, 0.5, 0.5, 1.0> }
    #local pS33  = array[3] { pL3_0, pL3_1, pL3_2 }
    #local pL5 = pFdiagonalisation( 2, pS33 )
    #switch (aspect) 
    #case (0) draw( 2, pS33, 

finesse(<0,4>) + courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (1) draw( 2, pS33, 

finesse(<1,4>) + courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (2) draw( 2, pS33, 

finesse(<2,4>) + courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (3) draw( 2, pS33, 

finesse(<3,4>) + courbe(0.01) + ma_couleur(<1,1,0,0>) ) #break
    #case (4) draw( 2, pS33, 

finesse(<4,4>) +surface(LISSE)+ma_couleur(<1,1,0,0.5>)) #break
    #end
    #switch (aspect) 
    #case (0) draw( 1, pL5, finesse(0) + point(0.02) 

+ ma_couleur(<1,0,0,0>) ) #break
    #case (1) draw( 1, pL5, finesse(1) + point(0.02) 
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+ ma_couleur(<1,0,0,0>) ) #break
    #case (2) draw( 1, pL5, finesse(2) + point(0.02) 

+ ma_couleur(<1,0,0,0>) ) #break
    #case (3) draw( 1, pL5, finesse(3) + point(0.02) 

+ ma_couleur(<1,0,0,0>) ) #break
    #case (4) 
    draw( 1, pL5, finesse(5) + courbe(0.02) 

+ ma_couleur(<1,1,0,0>) )
    draw( 1, pL5, finesse(0) + point(0.04) 

+ ma_couleur(<1,0,0,0>) ) 
    #break
    #end
#end

// 13 : GENERALISATION, LES pFORMES

#macro pF_130() // pV333, pS35 et pL7
    #local pL3_0 = array[3] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.0, 0.5,-0.5, 1.0>, < 0.5,-0.5,-0.5, 1.0> }
    #local pL3_1 = array[3] { <-0.5, 0.5,-0.0, 1.0>, 

< 0.0, 0.5,-0.0, 1.0>, < 0.5,-0.5,-0.0, 1.0> }
    #local pL3_2 = array[3] { <-0.5, 0.5, 0.5, 1.0>, 

< 0.0,-0.5, 0.5, 1.0>, < 0.5, 0.5, 0.5, 1.0> }
    #local pS33  = array[3] { pL3_0, pL3_1, pL3_2 }
    #local pS33_0 = pS33 pFtranslate( 2, pS33_0, <0,-0.25,0> )
    #local pS33_1 = pS33 pFscale( 2, pS33_1, <1.5,1,1.5> )
    #local pS33_2 = pS33 pFtranslate( 2, pS33_2, <0, 0.25,0> )

#local pV333 = array[3] { pS33_0, pS33_1, pS33_2 }
#local pS35 = pFdiagonalisation( 3, pV333 )

// 3 et (3+3-2)*(2-1)+1 = 5 -> 35
//#local pS35 = pFstretch( 2, pS35, <-0.1,-0.1,0,1>,

 <1.1,1.1,0,1> )
#local pL7 = pFdiagonalisation( 2, pS35 )

// (3+5-2)*(2-1)+1 = 7
// #local pL7 = pFstretch(1, pL7,<-0.1,0,0,1>,<1.1,0,0,1>)
    draw( 3, pV333, finesse(<3,3,3,0>) + fibres(0.005) 

+ ma_couleur(<1,1,1,0.5>) )
// draw( 3, pV333, finesse(<3,3,3,0>) 

+ enveloppe(LISSE) + ma_couleur(<1,1,1,0.8>) )
//draw( 3, pV333, finesse(<2,3,3,0>) 

+ feuilles(LISSE) + ma_couleur(<1,1,1,0.8>) )
//draw( 3, pV333, finesse(<3,3,3,0>) 
+ fibres(0.005) + ma_couleur(<1,1,1,0>) )

    draw( 2, pS35, finesse(<2,4>) + surface(LISSE) 
+ ma_couleur(<0,1,0,0.5>) )
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    //draw( 2, pS35, finesse(<2,4>) + courbe(0.01) 
+ ma_couleur(<1,1,0,0.5>) )

    draw( 1, pL7, finesse(5) + courbe(0.02) 
+ ma_couleur(<1,0,0,0>) )

    draw( 2, pS35, finesse(<0,0>) + point(0.02) 
+ ma_couleur(<1,1,0,0>) )

    //draw( 1, pL7, finesse(0) + courbe(0.005) 
+ ma_couleur(<1,1,1,0>) )

    draw( 1, pL7, finesse(0) + point(0.03) 
+ ma_couleur(<1,0,0,0>) )

#end

// 21 : OPERATIONS FONDAMENTALES

#macro pF_212() // ondulations sur un arc de cercle
cylinder { <0,-0.5,0>, <0,0.5,0>, 0.5 

pigment { color rgb <1,1,1,0.5> } }
#local arc = quart_cercle_3( 0.5, 1 ) 
pFrotate( 1, arc, <-90,0,0> )
#local ond = pLup( arc, 2 ) //
#local n = taille(ond);
#local i=0; #while (i<n)
pFtranslate( 0, ond[i], <0,0.5*sin(2*pi*i/(n-1)),0> )
#local i=i+1; #end
draw( 1, ond, finesse(0) + point(0.03) 

+ ma_couleur(<1,0,0>) ) 
draw( 1, ond, finesse(5) + courbe(0.01) 

+ ma_couleur(<1,1,0>) ) 
#end

#macro pF_2131() // pL4 reparamétrisée
#local pL4 = array[4] 

{ <-1/2,-1/2,-1/2,1>, < 1/2,-1/2,-1/2,1>, 
< 1/2, 1/2,-1/2,1>, < 1/2, 1/2, 1/2,1> }
draw(1,pL4,finesse(0)+point(0.05)+ma_couleur(<1,0,0>))
draw(1,pL4, finesse(5)+courbe(0.01)+ma_couleur(<1,0,0>))
#local pL4 = pFstretch(1,pL4,< 1/4,0,0,1>,<3/4,0,0,1>)
draw( 1, pL4, finesse(0) + point(0.05) 

+ ma_couleur(<0,1,0,0.5>) )
draw( 1, pL4, finesse(5) + courbe(0.02) 

+ ma_couleur(<0,1,0,0.5>) )
#end

#macro pF_2132() // pS35 reparamétrisée
    #local pL3_0 = array[3] { <-0.5,-0.5,-0.5, 1.0>, 
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< 0.0, 0.5,-0.5, 1.0>, < 0.5,-0.5,-0.5, 1.0> }
    #local pL3_1 = array[3] { <-0.5, 0.5,-0.0, 1.0>, 

< 0.0, 0.5,-0.0, 1.0>, < 0.5,-0.5,-0.0, 1.0> }
    #local pL3_2 = array[3] { <-0.5, 0.5, 0.5, 1.0>, 

< 0.0,-0.5, 0.5, 1.0>, < 0.5, 0.5, 0.5, 1.0> }
    #local pS33  = array[3] { pL3_0, pL3_1, pL3_2 }

draw( 2, pS33, finesse(<0,0>) + point(0.02) 
+ ma_couleur(<1,1,0,0.5>) )

draw( 2, pS33, finesse(<3,3>) + surface(LISSE) 
+ ma_couleur(<1,1,0,0.5>) )

#local pS33 = pFstretch( 2, pS33, 
<1/8,1/8,0,1>, <7/8,7/8,0,1> )

pFtranslate( 2, pS33, <0,0.01,0> )
draw( 2, pS33, finesse(<0,0>) + point(0.02) 

+ ma_couleur(<1,1,1,0.5>) )
draw( 2, pS33, finesse(<3,3>) + surface(LISSE) 

+ ma_couleur(<1,1,1,0.5>) )
#end

#macro pF_214( ) // pFgetSubForm, pFgetPoint, pFgetPijk 
    #local pL3_0 = array[3] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.0, 0.5,-0.5, 1.0>, < 0.5,-0.5,-0.5, 1.0> }
    #local pL3_1 = array[3] { <-0.5, 0.5,-0.0, 1.0>, 

< 0.0, 0.5,-0.0, 1.0>, < 0.5,-0.5,-0.0, 1.0> }
    #local pL3_2 = array[3] { <-0.5, 0.5, 0.5, 1.0>, 

< 0.0,-0.5, 0.5, 1.0>, < 0.5, 0.5, 0.5, 1.0> }
    #local pS33  = array[3] { pL3_0, pL3_1, pL3_2 }
    draw( 2, pS33, finesse(<4,4>) + surface(LISSE) 

+ ma_couleur(<1,1,0,0.5>) )
    draw( 2, pS33, finesse(<3,3>) + normales(0.01,-0.05) 

+ ma_couleur(<1,1,0,0.8>) )
   
    #local pL3 = pFgetSubForm( 2, pS33, 1/4 )
    draw( 1, pL3, finesse(5) + courbe(0.02) 

+ ma_couleur(<1/2,1/2,1/2,0>) )
 
    #local p = pFgetPoint( 2, pS33, <1/4,1/4,0,1> )
    draw( 0, p, point(0.05) + ma_couleur(<1,0,0,0.5>) )
    
    pSdrawPijk( pS33, <4/6,1/3,0,1>, 0.3, 0.01 )
    pLdrawFrenet( pL3, 1/4, 0.3, 0.01 )
#end
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// 22 : IMMERSIONS

// 221 : INTERPOLATION

#macro pF_2211() // pL5 interpolante
#local pL5 = array[5] { 
<-1/2,-1/2,-1/2,1>, < 1/2,-1/2,-1/2,1>,
< 1/2, 1/2,-1/2,1>, < 1/2, 1/2, 1/2,1>, < 1/2,-1/2, 1/2,1> }
draw( 1, pL5, finesse(0) + point(0.05)+ma_couleur(<1,0,0>) )
#local pL5 = pLinterpolante( pL5 )
#local pL5 =pFstretch(1,pL5,<-0.03,0,0,1>, <1.03,0,0,1>)
draw( 1, pL5, finesse(5) + courbe(0.01) 

+ma_couleur(<1,1,0>) )
#end

#macro pF_2212() // pS35 interpolante
#local pL3 = array[3] { <-1/2, 0,-1/2,1>, 

< 0, 0,-1/2,1>, < 1/2, 0,-1/2,1> }
#local pL3_0 = pL3 pFtranslate( 1, pL3_0, <0,0,0/4> ) 
pFtranslate( 0, pL3_0[1], <0,0,-1/4> )
#local pL3_1 = pL3 pFtranslate( 1, pL3_1, <0,0,1/4> ) 
pFtranslate( 0, pL3_1[1], <0,-1/4,0> )
#local pL3_2 = pL3 pFtranslate( 1, pL3_2, <0,0,2/4> ) 
pFtranslate( 0, pL3_2[2], < 1/8,0,0> )
#local pL3_3 = pL3 pFtranslate( 1, pL3_3, <0,0,3/4> ) 
pFtranslate( 0, pL3_3[1], <0, 1/4,0> )
#local pL3_4 = pL3 pFtranslate( 1, pL3_4, <0,0,4/4> ) 
pFtranslate( 0, pL3_4[1], <0,0, 1/4> )
#local pS35 = array[5] {pL3_0,pL3_1,pL3_2,pL3_3,pL3_4}
draw( 2, pS35, finesse(<0,0>) + point(0.04) 

+ ma_couleur(<1,0,0>) )
#local pS35 = pSinterpolante( pS35 )
#local pS35 = pFstretch( 2, pS35, 

<-0.06,-0.06,0,1>, <1.06,1.06,0,1> )
draw( 2, pS35, finesse(<4,4>) + surface(LISSE) 

+ ma_texture(MARBRE) )
#local pL7 = pFdiagonalisation( 2, pS35 )
#local pL7 = pFstretch(1,pL7,<-0.3,0,0,1>,<1.01,0,0,1>)
draw( 1, pL7, finesse(6)

+courbe(0.01)+ma_couleur(<1,1,0>) )
#end

#macro pF_2235() // pL3 immergée dans une PS33
    #local pL3_0 = array[3] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.0, 0.5,-0.5, 1.0>, < 0.5,-0.5,-0.5, 1.0> }
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    #local pL3_1 = array[3] { <-0.5, 0.5,-0.0, 1.0>, 
< 0.0, 0.5,-0.0, 1.0>, < 0.5,-0.5,-0.0, 1.0> }

    #local pL3_2 = array[3] { <-0.5, 0.5, 0.5, 1.0>, 
< 0.0,-0.5, 0.5, 1.0>, < 0.5, 0.5, 0.5, 1.0> }

    #local pS33  = array[3] { pL3_0, pL3_1, pL3_2 }

#local p0 = <1/4,1/8,0,1> ; 
#local p1 = <1/8,3/4,0,1> ; 
#local p2 = <7/8,2/4,0,1> ;
#local q0 = (p0+p1)/2 ;
#local q1 = (p1+p2)/2 ;
#local r0 = (q0+q1)/2 ;

#local pL2_0 = array[2] { p0, p1 }
#local pL2_1 = array[2] { p1, p2 }
#local pL2_2 = array[2] { (p0+p1)/2, (p1+p2)/2 }
#local pL3 = array[3] { p0, p1, p2 }

#local ipL2_0 = courbe_in_surface( pL2_0, pS33 )
#local ipL2_1 = courbe_in_surface( pL2_1, pS33 )
#local ipL2_2 = courbe_in_surface( pL2_2, pS33 )
#local ipL3 = courbe_in_surface( pL3, pS33 )

#local ip = pFgetPoint( 2, pS33, p0 ) 
draw( 0, ip, point(0.04) + ma_couleur(<1,0,0,0>) )
#local ip = pFgetPoint( 2, pS33, p1 ) 
draw( 0, ip, point(0.04) + ma_couleur(<1,0,0,0>) )
#local ip = pFgetPoint( 2, pS33, p2 ) 
draw( 0, ip, point(0.04) + ma_couleur(<1,0,0,0>) )
#local ip = pFgetPoint( 2, pS33, q0 ) 
draw( 0, ip, point(0.04) + ma_couleur(<0,1,0,0>) )
#local ip = pFgetPoint( 2, pS33, q1 ) 
draw( 0, ip, point(0.04) + ma_couleur(<0,1,0,0>) )
#local ip = pFgetPoint( 2, pS33, r0 ) 
draw( 0, ip, point(0.05) + ma_couleur(<0,0,1,0>) )

    draw( 2, pS33, finesse(<4,4>) + surface(LISSE) 
+ ma_couleur(<1,1,0,0.5>) ) 

draw( 1, ipL2_0, finesse(5) + courbe(0.01) 
+ ma_couleur(<1,1,1,0>) )

draw( 1, ipL2_1, finesse(5) + courbe(0.01) 
+ ma_couleur(<1,1,1,0>) )

draw( 1, ipL2_2, finesse(5) + courbe(0.01) 
+ ma_couleur(<1,1,0,0>) )

draw( 1, ipL3, finesse(5) + courbe(0.02) 
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+ ma_couleur(<0,1,0,0>) )

#end

#macro pF_2236() // pL4 immergée dans une PS33
    #local pL3_0 = array[3] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.0, 0.5,-0.5, 1.0>, < 0.5,-0.5,-0.5,1.0> }
    #local pL3_1 = array[3] { <-0.5, 0.5,-0.0, 1.0>, 

< 0.0, 0.5,-0.0, 1.0>, < 0.5,-0.5,-0.0, 1.0> }
    #local pL3_2 = array[3] { <-0.5, 0.5, 0.5, 1.0>, 

< 0.0,-0.5, 0.5, 1.0>, < 0.5, 0.5, 0.5, 1.0> }
    #local pS33  = array[3] { pL3_0, pL3_1, pL3_2 }

#local p0 = <1/4,1/8,0,1> ; 
#local p1 = <1/8,3/4,0,1> ; 
#local p2 = <7/8,2/4,0,1> ;
#local p3 = <4/8,1/4,0,1> ;

    draw( 2, pS33, 
finesse(<4,4>) + surface(LISSE) + ma_couleur(<1,1,0,0.5>) )

    #local ipL2 = courbe_in_surface(array[2] {p0, p1}, pS33 ) 
draw( 1, ipL2, 
finesse(5) + courbe(0.01) + ma_couleur(<1,1,1,0>) )

    #local ipL2 = courbe_in_surface( array[2] {p1, p2}, pS33 ) 
draw( 1, ipL2, 
finesse(5) + courbe(0.01) + ma_couleur(<1,1,1,0>) )

    #local ipL2 = courbe_in_surface( array[2] {p2, p3},pS33 ) 
draw( 1, ipL2, 
finesse(5) + courbe(0.01) + ma_couleur(<1,1,1,0>) )

    #local ipL4 = courbe_in_surface(array[4]{p0,p1,p2,p3},pS33) 
draw( 1, ipL4, 
finesse(5) + courbe(0.02) + ma_couleur(<0,1,0,0.5>) )

#end

// 23 : INTERFACE

// 231 : TRANSFORMATIONS

#macro pF_2311() // pFrotate sur une pL4
#local pL4 = array[4] {
<-1/2,-1/2,-1/2,1>, < 1/2,-1/2,-1/2,1>,
< 1/2, 1/2,-1/2,1>, < 1/2, 1/2, 1/2,1> }
#local N = 24;
#local i=0; #while (i<N)
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draw( 1, pL4, 
finesse(6) + courbe(0.03) + ma_couleur(<1,1,0,0>) )
pFrotate( 1, pL4, <0,360/(N-1),0> )

#local i=i+1; #end
#end

#macro pF_2312() // pFtranslate sur une pL4
#local pL4 = array[4] {
<-1/2,-1/2,-1/2,1>, < 1/2,-1/2,-1/2,1>,
< 1/2, 1/2,-1/2,1>, < 1/2, 1/2, 1/2,1> }
pFtranslate( 1, pL4, <0,-1/2,0> )
#local N = 24;
#local i=0; #while (i<N)

draw( 1, pL4, 
finesse(6) + courbe(0.03) + ma_couleur(<1,1,0,0>) )
pFtranslate( 1, pL4, <0,1/(N-1),0> )

#local i=i+1; #end
#end

#macro pF_2313() // pFscale sur une pL4
#local pL4 = array[4] {
<-1/2,-1/2,-1/2,1>, < 1/2,-1/2,-1/2,1>,
< 1/2, 1/2,-1/2,1>, < 1/2, 1/2, 1/2,1> }
#local N = 24;
#local i=0; #while (i<N)

draw( 1, pL4, 
finesse(6) + courbe(0.03) + ma_couleur(<1,1,0,0>) )
pFscale( 1, pL4, <0.7,1,0.7> )

#local i=i+1; #end
#end

// 3 : COMPOSITIONS

// 31 : FORMES RATIONNELLES

#macro pF_3111() // les 4 coniques comme projections de pL3
#local oo = <0,0.5,0,1> ;
#local p0 = <0.5,0,0,1> ;
#local p1 = <0.5,0,0.5,1> ;
#local p2 = <0,0,0.5,1> ;
#local k = 1/sqrt(2);
#local eps = 0.01 ;

#macro conic( uu )
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union 
{

#local pL3 = array[3] { p0, k/uu*((1-uu)*oo+uu*p1), p2 }
draw( 1, pL3, finesse(0) + point(0.03) + ma_couleur(<1,0,0>))
#local pL3 = pFstretch( 1, pL3,<-k+eps,0,0,1>,<1+k-eps,0,0,1>)
draw( 1, pL3, finesse(6) + courbe(0.02) + ma_couleur(<1,1,0>))

}
#end

union
{ cone { <0,0.5,0>, 0, <0,-0.5,0>, 1  

pigment { color rgbt <1,1,1,0.5> } }
draw( 0, oo, point(0.03) + ma_couleur(<1,1,1>) )
#local pL2 = array[2] { oo, p1 }
#local pL2 = pFstretch(1, pL2,<-k,0,0,1>,<1+k,0,0,1>)
draw( 1, pL2, 

finesse(0)+courbe(0.01)+ma_couleur(<1,1,1>) )
conic( 0.500 ) // hyperbole verticale
conic( 0.707 ) // cercle
conic( 1.000 ) // parabole
conic( 1.500 ) // ellipse
rotate <0,45,0>

}
#end

#macro pF_31121() // pL3, pL4 et pL5 -> arcs de cercle
cylinder { <0,0,-1>, <0,0,1>, 0.5 

pigment { color rgbt <1,1,1,0.5> } }
#local pL3 = quart_cercle_3( 0.5, 1 )
pFtranslate( 1, pL3, <0,0,-0.25> )
#local pL4 = demi_cercle_4( 0.5 )
#local pL5 = demi_cercle_5( 0.5 )
pFtranslate( 1, pL5, <0, 0, 0.25> )
draw( 1, pL3, 
finesse(0) + point(0.03) + ma_couleur(<1,0,0>) )
draw( 1, pL3, 
finesse(0) + courbe(0.005) + ma_couleur(<1,1,1>) )
draw( 1, pL3, 
finesse(6) + courbe(0.01) + ma_couleur(<1,1,0>) )
draw( 1, pL4, 
finesse(0) + point(0.03) + ma_couleur(<1,0,0>) )
draw( 1, pL4, 
finesse(0) + courbe(0.005) + ma_couleur(<1,1,1>) )
draw( 1, pL4, 
finesse(6) + courbe(0.01) + ma_couleur(<1,1,0>) )
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draw( 1, pL5, 
finesse(0) + point(0.03) + ma_couleur(<1,0,0>) )
draw( 1, pL5, 
finesse(0) + courbe(0.005) + ma_couleur(<1,1,1>) )
draw( 1, pL5, 
finesse(6) + courbe(0.01) + ma_couleur(<1,1,0>) )

#end

#macro pF_31122( choix )
// pL3, pL4 et pL5, projections R4->R3 et arcs de cercle 

cone { <0,0,-0.5>, 0, <0,0,0.5>, 1.0  
pigment { color rgbt <1,1,1,0.5> } }

#local k = 1/sqrt(2);
#local r = 0.5;
#local oo = < 0,0,-0.5,1 >;
#switch (choix)
#case (1)
    #local p0 = < r, 0, 0, 1 > ;
    #local p1 = < r, r, 0, 1 > ;
    #local p2 = < 0, r, 0, 1 > ;
    #local uu = k;
    #local pL = array[3] {p0, k/uu*((1-uu)*oo+uu*p1),p2}
    #local arc = array[3] { p0, p1*k, p2 }
#break
#case (2)
    #local p0 = <  r, 0,  0, 1 > ;

// k/uu*((1-uu)*oo+uu*p1) = (2*oo+p1)/3
    #local p1 = <  r, 2*r,0, 1 > ;

// k/uu*oo -k*oo + k*p1 = 2/3*oo + p1/3
    #local p2 = < -r, 2*r,0, 1 > ; // 
    #local p3 = < -r, 0,  0, 1 > ;
    //#local uu = ??; k/uu*((1-uu)*oo+uu*p1) dosn't work
   #local pL = array[4] {p0,(2*oo+p1)/3,(2*oo+p2)/3,p3}
    #local arc = array[4] { p0, p1/3, p2/3, p3 }
#break
#case (3)
    #local p0 = <  r, 0,      0, 1 > ;
    #local p1 = <  r, r,      0, 1 > ;
    #local p2 = <  0, 3/2*r,  0, 1 > ;
    #local p3 = < -r, r,      0, 1 > ;
    #local p4 = < -r, 0,      0, 1 > ;
    #local uu = 1/2;
    #local pL = array[5] { p0, k/uu*((1-uu)*oo+uu*p1), 
    k/uu*((1-uu)*oo+uu*p2), 
    k/uu*((1-uu)*oo+uu*p3),
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p4 }
    #local arc = array[5] { p0, p1*k, p2*2/3, p3*k, p4 }
#break
#end

union 
{
#local h = 0.0;
#switch (choix)

#case (1) #local h = 1.0; #break
#case (2) #local h = 0.6; #break
#case (3) #local h = 0.2; #break

#end
draw( 1, pL, 
finesse(0) + point(0.04) + ma_couleur(<0,1,0,0.5>) )
draw( 1, pL, finesse(0) + courbe(0.01)+ma_couleur(<1,1,1>) )
#local pL = pFstretch( 1, pL, <-h,0,0,1>, <1+h,0,0,1> )
draw( 1, pL, 
finesse(6) + courbe(0.02) + ma_couleur(<0,1,0>) )
draw( 1, arc, 
finesse(0) + point(0.04) + ma_couleur(<1,0,0,0.05>) )
draw( 1, arc, 
finesse(0) + courbe(0.01)+ma_couleur(<1,1,1>))
#local arc = pFstretch( 1, arc, <-h,0,0,1>,<1+h,0,0,1>)
draw( 1, arc, 
finesse(6) + courbe(0.02)+ma_couleur(<1,0,0>))
rotate <0,0,0>
}

#end

#macro pF_3113() // 3  approches du cercle complet
#local k = 1/sqrt(2) ;
#local eps = 0.01 ;

// cylinder { <0,0,-1>, <0,0,1>, 0.5 
pigment { color rgbt <1,1,1,0.5> } }

#local pL3 = quart_cercle_3( 0.5, 1 )
pFtranslate( 1, pL3, <0,0,-1> )
#local pL4 = demi_cercle_4( 0.5 )
#local pL5 = demi_cercle_5( 0.5 )
pFtranslate( 1, pL5, <0,0, 1> )
#local pL3 = pFstretch( 1,pL3,<-5,0,0,1>,<6,0,0,1>)
draw( 1,pL3,finesse(0)+point(0.03)+ma_couleur(<1,0,0>))
draw( 1,pL3,finesse(0)+courbe(0.01)+ma_couleur(<1,1,1>))
draw( 1,pL3,finesse(6)+point(0.02)+ma_couleur(<1,1,0>))
#local pL4 = pFstretch( 1, pL4, <-1,0,0,1>, <2,0,0,1>)
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draw( 1,pL4,finesse(0)+point(0.03)+ma_couleur(<1,0,0>))
draw(1,pL4,finesse(0)+courbe(0.01)+ma_couleur(<1,1,1>))
draw( 1,pL4,finesse(6)+point(0.02)+ma_couleur(<1,1,0>))
#local pL5 = pFstretch( 1, pL5, 

<-k+eps,0,0,1>, <1+k-eps,0,0,1> )
draw( 1,pL5,finesse(0)+point(0.03)+ma_couleur(<1,0,0>))
draw( 1,pL5,finesse(0)+courbe(0.01)+ma_couleu(<1,1,1>))
draw( 1,pL5,finesse(6)+point(0.02)+ma_couleur(<1,1,0>))

#end

#macro pF_3114( uu ) // cercle immergé dans une pS33
    #local pL3_0 = array[3] { <-0.5,-0.5,-0.5, 1.0>, 

< 0.0, 0.5,-0.5, 1.0>, < 0.5,-0.5,-0.5, 1.0> }
    #local pL3_1 = array[3] { <-0.5, 0.5,-0.0, 1.0>, 

< 0.0, 0.5,-0.0, 1.0>, < 0.5,-0.5,-0.0, 1.0> }
    #local pL3_2 = array[3] { <-0.5, 0.5, 0.5, 1.0>, 

< 0.0,-0.5, 0.5, 1.0>, < 0.5, 0.5, 0.5, 1.0> }
    #local pS33  = array[3] { pL3_0, pL3_1, pL3_2 }
    draw( 2, pS33, finesse(<3,3>) + surface(LISSE) 

+ ma_couleur(<1,1,0,0.5>) )
#local pL5 = demi_cercle_5( 0.25 )

    pFtranslate( 1, pL5, <0.5,0.5,0> )
    #local pL5 = pFstretch( 1, pL5,<0-uu,0,0,1>,<1+uu,0,0,1>)

/*    
#local i=0; #while (i<5)

#local ip = pFgetPoint( 2, pS33, pL5[i] )
draw( 0, ip, point(0.03) + ma_couleur(<1,0,0>) )

#local i=i+1; #end

#local i=0; #while (i<4)
#local pL2 = array[2]{ pL5[i], pL5[i+1] }
#local ipL2 = courbe_in_surface( pL2, pS33 )
draw( 1, ipL2, finesse(6) + courbe(0.01) 

+ ma_couleur(<1,1,1>) )
#local i=i+1; #end

*/    
#local ipL5 = courbe_in_surface( pL5, pS33 )
draw( 1, ipL5, finesse(6) + courbe(0.02) 

+ ma_couleur(<0,1,0>) )
#end

#macro pF_312() // le cylindre, le tore et la sphère
#local R = 0.5;
#local H = 0.5;

182 / 192



pascalian forms | pFbook.inc file

#local R1 = 0.5;
#local R2 = 0.25;

// un quart de cylindre de rayon R et de hauteur H:
#local k = sqrt(2)/2;
#local pCylindre = array[2] 
{ array[3] { < R, 0, 0, 1 >, 

< R, R, 0, 1 >*k, < 0, R, 0, 1 > },
        array[3] { < R, 0, H, 1 >, 

< R, R, H, 1 >*k, < 0, R, H, 1 > } 
}

// un seizième de tore de rayons R1 et R2:
#local R12 = R1+R2;
#local R2 = abs(R2);
#local pTore = array[3]     
{ array[3] { < 0,   0, -R12, 1 >, 

< 0,  R2, -R12, 1 >*k, < 0,  R2,  -R1, 1 > },
        array[3] { < R12,  0, -R12, 1 >*k, 

< R12, R2, -R12, 1 >*k*k, <  R1, R2, -R1,  1 >*k }
        array[3] { < R12,  0,  0, 1 >, 

< R12, R2,  0, 1 >*k, <  R1, R2,  0, 1 > } 
}

// une huitième de sphère de rayon R:
#local pSphere = array[3]   
{ array[3] { < R, 0, 0, 1 >, 

< R, R, 0, 1 >*k, < 0, R, 0, 1 > },
        array[3] { < R, 0, -R, 1 >*k, 

< R, R, -R, 1 >*k*k, < 0, R,  0, 1 >*k },
        array[3] { < 0, 0, -R, 1 >, < 0, R, -R, 1 >*k, 

< 0, R,  0, 1 > } 
}
pFtranslate( 2, pCylindre, <0,0,0.05> )
pFtranslate( 2, pTore, <0,-0.3,0> )
pFtranslate( 2, pSphere, <0,0,0> )
draw( 2, pCylindre, finesse(<0,0>) + point(0.03) 

+ ma_couleur(<1,0,0,0>) )
draw( 2, pCylindre, finesse(<3,3>) + surface(LISSE) 

+ ma_couleur(<1,1,0,0.5>))
draw( 2, pTore, finesse(<0,0>) + point(0.03) 

+ ma_couleur(<1,0,0,0>))
draw( 2, pTore, finesse(<3,3>) + surface(LISSE) 

+ ma_couleur(<0,1,1,0.5>))
draw( 2, pSphere, finesse(<0,0>) + point(0.03) 

+ ma_couleur(<1,0,0,0>))
draw( 2, pSphere, finesse(<3,3>) + surface(LISSE) 

+ ma_couleur(<1,0,0,0.5>))
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#local diag = pFdiagonalisation( 2, pCylindre )
#local diag = pFstretch(1,diag,<-0.2,0,0,1>,<1.2,0,0,1>)
draw( 1, diag, finesse(6) + courbe(0.01) 

+ ma_couleur(<1,1,1>) )
#local diag = pFdiagonalisation( 2, pTore )
#local diag = pFstretch(1,diag,<-0.2,0,0,1>,<1.2,0,0,1>)
draw( 1, diag, finesse(6) + courbe(0.01) 

+ ma_couleur(<1,1,1>) )
#local diag = pFdiagonalisation( 2, pSphere )
#local diag = pFstretch(1,diag,<-0.2,0,0,1>,<1.2,0,0,1>)
draw( 1, diag, finesse(6) + courbe(0.01) 

+ ma_couleur(<1,1,1>) )
#end

#macro pF_3131(N) // diagonales // immergées dans un tore
torus { 0.5, 0.25 pigment { color rgbt <1,1,1,0.5> } }
#local c2 = demi_cercle_5( 1 ) // chemin dans xOz
// demi-diagonale 1
#local c1 = demi_cercle_5( 0.25 ) // section dans xOy
pFtranslate( 1, c1, <0.5,0,0> )
#local pS33 = cross( c1, c2 )
#local ipL2_1 = pFdiagonalisation( 2, pS33 )
// demi-diagonale 2
#local c1 = demi_cercle_5( 0.25 ) // section dans xOy
pFscale( 1, c1, <-1,-1,1> )
pFtranslate( 1, c1, <0.5,0,0> )
pFrotate( 1, c1, <0,180,0> )
#local pS33 = cross( c1, c2 )
#local ipL2_2 = pFdiagonalisation( 2, pS33 )

#local i=0; #while(i<N)
union
{ draw( 1, ipL2_1, finesse(5) + courbe(0.01) 

+ ma_couleur(<1,0,0>) )
draw( 1, ipL2_2, finesse(5) + courbe(0.01) 

+ ma_couleur(<1,0,0>) )
rotate <0,360*i/(N-1),0>

}
#local i=i+1; #end

#end

#macro pF_3132(N) // faisceau de droites immergées dans un tore
torus { 0.5, 0.25 pigment { color rgbt <1,1,1,0.5> } }
#local c1 = demi_cercle_4( 0.25 ) 
pFtranslate( 1, c1, <0.5,0,0> ) // section dans xOy
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#local c2 = demi_cercle_4( 1 ) // chemin dans xOz
#local pS33 = cross( c1, c2 )
pFrotate( 2, pS33, <0,-90,0> )
#local i=0; #while(i<N)

#local aa = 2*pi*i/N ;
 #local pL2 = 

array[2]{<0,0,0,1>,<cos(aa),sin(aa),0,1>}
 pFtranslate( 1, pL2, <0.5,0.5,0> )
 #local ipL2 = courbe_in_surface( pL2, pS33 )

draw( 1, ipL2, finesse(5) + courbe(0.005) 
+ ma_couleur(<1,1,1>) )

#local i=i+1; #end
#end

#macro pF_3133( N ) // cercles concentriques immergés dans un tore
// torus { 0.5, 0.249 pigment { color rgbt <1,1,1,0.5> } }

#local c1 = demi_cercle_4( 0.25 ) 
pFtranslate( 1, c1, <0.5,0,0> ) // section dans xOy
#local c2 = demi_cercle_4( 1 ) // chemin dans xOz
#local pS33 = cross( c1, c2 )
pFrotate( 2, pS33, <0,-90,0> )

//    draw( 2, pS33, finesse(<3,3>) + point(0.005) 
+ ma_couleur(<1,1,1,0>) )

#local i=0; #while (i<N)
#local uu = i/(N-1);
#local pL5 = demi_cercle_4( (1-uu)*0.05 + uu*1.0 )
#local pL5_up = pL5
#local pL5_down = pL5

    pFrotate( 1, pL5_up, <0,0,180> )
    pFtranslate( 1, pL5_up, <0.5,0.5,0> )
     pFtranslate( 1, pL5_down, <0.5,0.5,0> )
 #local ipL5_up = courbe_in_surface( pL5_up, pS33 )

#local ipL5_down =courbe_in_surface(pL5_down,pS33)
draw( 1, ipL5_up, finesse(4) + courbe(0.01) 

+ ma_couleur(<1,uu,0>) )
draw( 1, ipL5_down, finesse(4) + courbe(0.01) 

+ ma_couleur(<1,uu,0>) )
#local i=i+1; #end

#end

#macro pF_3134( N, R )//cercle et ses rayons (R<2) dans un tore
torus { 0.5, 0.25 pigment { color rgbt <1,1,1,0.5> } }
#local c1 = demi_cercle_4( 0.25 ) 
pFtranslate( 1, c1, <0.5,0,0> ) // section dans xOy
#local c2 = demi_cercle_4( 1 ) // chemin dans xOz
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#local pS33 = cross( c1, c2 )
pFrotate( 2, pS33, <0,-90,0> )

   // draw( 2, pS33, 
finesse(<3,3>) + point(0.005) + ma_couleur(<1,1,1,0>) )
#local pL5 = demi_cercle_4( R )
#local pL5_up = pL5
#local pL5_down = pL5
pFrotate( 1, pL5_up, <0,0,180> )
pFtranslate( 1, pL5_up, <0.5,0.5,0> )

 pFtranslate( 1, pL5_down, <0.5,0.5,0> )
#local ipL5_up = courbe_in_surface( pL5_up, pS33 )
#local ipL5_down = courbe_in_surface( pL5_down, pS33 )
draw( 1, ipL5_up, finesse(6) + courbe(0.02) 

+ ma_couleur(<1,0,0>) )
draw( 1, ipL5_down, finesse(6) + courbe(0.02) 

+ ma_couleur(<1,0,0>) )

#local i=0; #while(i<N)
#local aa = 2*pi*i/N ;

 #local pL2 = array[2] {<0,0,0,1>, 
<R*cos(aa),R*sin(aa),0,1> }

 pFtranslate( 1, pL2, <0.5,0.5,0> )
 #local ipL2 = courbe_in_surface( pL2, pS33 )

draw( 1, ipL2, finesse(5) + courbe(0.01) 
+ ma_couleur(<1,1,0>) )

#local i=i+1; #end

#end

#macro pF_3221() // un vase ( no box + pers 2/3 )
#local k = 1/sqrt(2);
#local c1 = array[7] { <0.01,-0.50,0,1>,

<0.10,-0.50,0,1>,
<0.50,-0.50,0,1>,
<0.50,-0.25,0,1>,
<0.10, 0.00,0,1>,
<0.10, 0.50,0,1>,
<0.15, 0.50,0,1>

} // section dans xOy
#local c2 = demi_cercle_5( 1 ) // chemin dans xOz
#local c2 = pFstretch( 1, c2, <-k,0,0,1>, <1+k,0,0,1> )
#local pS33 = cross( c1, c2 )
pFtranslate( 0, pS33[6][2], < 0,-0.5,0> ) 

// poignée et bec verseur
  pFrotate( 1, c1, <0,180,0> )
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  draw( 1, c1, finesse(6) + courbe(0.01) 
+ ma_couleur(<1,0,0,0>) )

 pFrotate( 2, pS33, <0,-90,0> )
   draw( 2, pS33, finesse(<4,4>) + surface(LISSE) 

+ ma_texture(MARBRE) )
   object { plane { <0,1,0>, -1/2 } une_texture( GRANIT ) }
 #end

#macro pF_3321() // surface minimale periodique COONS
#local p0 = <-1/2,-1/2,-1/2,1> + <0,1/2,-1/2> ;
#local p1 = <-1/2, 1/2,-1/2,1> + <0,1/2,-1/2> ;
#local p2 = <-1/2, 1/2, 1/2,1> + <0,1/2,-1/2> ;
#local p3 = <-1/2,-1/2,-0/2,1> + <0,1/2,-1/2> ;
#local p4 = <-0/2,-0/2, 1/2,1> + <0,1/2,-1/2> ;
#local p5 = <-1/2,-0/2, 1/2,1> + <0,1/2,-1/2> ;
#local p6 = <-0/2,-1/2,-0/2,1> + <0,1/2,-1/2> ;
#local p7 = <-0/2,-0/2,-0/2,1> + <0,1/2,-1/2> ;
#local p8 = <-0/2,-0/2, 1/2,1> + <0,1/2,-1/2> ;
#local L1 = array[6] { p0, p1, p1, p1, p1, p2 }

// approche d'un coin carré
#local L2 = array[3] { p6, p7/sqrt(2), p8 }

// arc de cercle
#local L3 = array[3] { p0, p3, p6 }

// arc de parabole
#local L4 = array[3] { p2, p5, p8 }

// arc de parabole
#local coons = creer_coons( L3, L4, L1, L2 )

#local i=0; #while (i<2)
#local j=0; #while (j<4)
union
{ draw(2,coons,finesse(<3,2>)+surface(LISSE) 

+ ma_texture(GRANIT) )
draw( 1, L1, finesse(4) + point(0.02) 

+ ma_couleur( < 0,0,1/2 > ) )
draw( 1, L2, finesse(4) + point(0.02) 

+ ma_couleur( < 0,0,1/2 > ) )
draw( 1, L3, finesse(4) + point(0.02) 

+ ma_couleur( < 1/2,0,0 > ) )
draw( 1, L4, finesse(4) + point(0.02) 

+ ma_couleur( < 1/2,0,0 > ) )
rotate <90*j,0,0>
#if (i=1) scale <-1,1,1> #end

}
#local j=j+1; #end
#local i=i+1; #end
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#end

#macro pF_3322() // coquillage COONS
#local L1 = array[3] { <0.0,0.0,-0.5,1>, 

<0.0,0.25,-0.5,1>/sqrt(2), <0.0,0.25,-0.1,1> }
#local L2 = array[3] { <0.5,0.0, 0.0,1>, 

<0.5,0.25, 0.0,1>/sqrt(2), <0.1,0.25, 0.0,1> }
#local L3 = array[3] { <0.0,0.25,-0.1,1>, 

<0.1,0.25,-0.1,1>/sqrt(2), <0.1,0.25,0.0,1> }
#local L4 = array[3] { <0.0,0.0,-0.5,1>, 

<0.5,0.0,-0.5,1>/sqrt(2), <0.5,0.0,0.0,1> }
#local L4 = pLup( L4, 6 ) //4,6
#local n = taille(L4);
#local i=0; #while (i<n)
pFtranslate( 0, L4[i], <0,0.25*sin(4*pi*i/(n-1)),0> )
#local i=i+1; #end
#local coons = creer_coons( L1, L2, L3, L4 )
#local j=0; #while (j<2)
#local i=0; #while (i<4)
union
{ draw( 2, coons, finesse(<3,3>) + surface(LISSE) 

+ ma_texture(MARBRE) )
#local diag = pFdiagonalisation( 2, coons )
draw( 1, diag, finesse(4) + courbe(0.005) 

+ ma_couleur( < 1,1,1 > ) )
//draw( 1, L1, finesse(4) + point(0.005) 

+ ma_couleur( < 0,0,1/2 > ) )
//draw( 1, L2, finesse(4) + point(0.005) 

+ ma_couleur( < 0,0,1/2 > ) )
draw( 1, L3, finesse(4) + courbe(0.005) 

+ ma_couleur( < 1/2,0,0 > ) )
draw( 1, L4, finesse(4) + courbe(0.005) 

+ ma_couleur( < 1/2,0,0 > ) )
rotate <0,90*i,0>
#if (j=1)

scale <-1,-1,1>
translate <0,-0.05,0>

#end
}
#local i=i+1; #end
#local j=j+1; #end

#end
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#macro pF_3323( k ) // rideau COONS 
// (no box+PERS 5/6, k=1,2,3,4,..)

#local L1 = creer_ligne( 4*k+1, 1 )
#local L2 = L1
#local n = taille(L2);
#local i=0; #while (i<n)

pFtranslate( 0, L2[i], 
<0,0,0.125*sin(2*k*pi*i/(n-1))> )

#local i=i+1; #end
pFtranslate( 1, L1, <0,0.5,0> )
pFtranslate( 1, L2, <0,-0.5,0> )
#local L3 = array[3] {<-0.5,0.5,0,1>, 

<-0.5,0,-0.125,1>, <-0.5,-0.5,0,1> }
#local L4 = array[3] {< 0.5,0.5,0,1>, 

< 0.5,0, 0.125,1>, <0.5,-0.5,0,1> }
#local L2 = pLinterpolante( L2 )
#local coons = creer_coons( L1, L2, L3, L4 )
#local diag = pFdiagonalisation( 2, coons )
union {
draw( 1, L2, finesse(6) + point(0.01) 

+ ma_couleur(<1,1,0,0>) )
draw( 2, coons, finesse(<3,3>) + surface(LISSE) 

+ ma_texture(MARBRE) )
draw( 1, diag, finesse(6) + courbe(0.01) 

+ ma_couleur( <0,1,0> ) )
translate <0,0,-0.25>
}
union {
draw( 1, L2, finesse(6) + point(0.01) 

+ ma_couleur(<1,1,0,0>) )
draw( 2, coons, finesse(<3,3>) + surface(LISSE) 

+ ma_texture(GRANIT) )
draw( 1, diag, finesse(6) + courbe(0.01) 

+ ma_couleur( <0,1,0> ) )
translate <0,0,0.25>}

#end

#macro pF_3421( k ) // spline interpolante quadrique  
// (no box + AXO 7/8, k=1,2,3,4,...)

#local curv = creer_ligne( 4*k+1, 1.5 )
#local n = taille(curv);
#local i=0; #while (i<n)

pFtranslate( 0, curv[i], 
<0,0.125*sin(2*k*pi*i/(n-1)),0> )

#local i=i+1; #end
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// tracer les points nodaux:
draw( 1, curv, finesse(0) + point(0.03) 

+ ma_couleur(<1,1,1>) )
draw( 1, curv, finesse(0) + courbe(0.005) 

+ ma_couleur(<1,1,1>) )
// tracer une pL interpolante
#local spi = pLinterpolante( curv )
draw( 1, spi, finesse(6) + point(0.01) 

+ ma_couleur(<0,1,0,0>) )
// tracer une spline interpolante ; 
// ATTENTION: spi est un tableau de paraboles !!
#local b_1 = curv[0] ; // 2*curv[0]-curv[1];

    #local spi = spline_interpolante_quadrique(b_1,curv,false)
#local i=0; #while (i<taille(spi))

draw( 1, spi[i], finesse(5) + point(0.01) 
+ ma_couleur(<0,0,1,0>) )

#local i=i+1; #end
#end

#macro pF_3431() // le cercle NURBS  (no box + AXO 7/8)
#local curv = array[5] 
{ <0.5,0.0,0.0,1>, <0.0,0.5,0.0,1>, 
<-0.5,0.0,0.0,1>, <0.0,-0.5,0.0,1>, <0.5,0.0,0.0,1> }
#local b_1 = <0.5,-0.5,0.0,1>;
// tracer les points nodaux:
draw( 1, curv, finesse(0) + point(0.04) 

+ ma_couleur(<1,1,1,0.5>) )
draw( 1, curv, finesse(0) + courbe(0.005) 

+ ma_couleur(<1,1,1>) )
draw( 0, b_1, point(0.04) + ma_couleur(<1,1,0,0>) )
// tracer la spline quadrique interpolante 
// (ATTENTION: spi est un tableau de paraboles)

  #local spi = spline_interpolante_quadrique(b_1,curv,true)
#local i=0; #while (i<taille(spi))

draw( 1, spi[i], finesse(5) + courbe(0.01) 
+ ma_couleur(<1,0,0,0>) )

#local i=i+1; #end
#end

... end of the file pFbook.inc !
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Final note :

1) the algorithms were programmed and the images produced  on POVRAY, an outstanding  free 
open source environment for Ray-Tracing development and rendering (GPL licence) ; the sources 
pFlibs.inc and pFbook.inc are under GPL licence ;

2) the images took a little detour via The Gimp, a superb software for touching up images, that is 
free open source (GPL licence) and saved in standard open jpg format ; the total weight of the 
images is around 35 Mo ;

3) this  document  was  finalised  on  NeoOffice.org,  « Bringing  the  power  of  OpenOffice  on  the 
Macintosh », a magnificent open source (GPL licence) applications suite producing open format 
(XML compressed ZIP). The text file of the full document composed in WRITER module weighs 
108 ko (images are linked,  not incorporated in the file) ; this file was directly exported from 
NeoOffice in pdf format in high quality, its weight is about 17 Mo. The front and back covers 
were  produced  in  the  DRAW  module,  the  file  weighs  19.4  ko  (images  are  linked,  not 
incorporated in the file) and was also exported in pdf format to produce a file weighing about 370 
ko. 

4) the writer, who isn't bad either, 80 ko, produces free open source code, and is looking forward to 
any comments that will help further this essay on curved forms.
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